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Abstract 
Research at the Maya archaeological site of Marco Gonzalez on Ambergris Caye in Belize is 

socio-ecological because human activities have been a factor in the formation and fluctuation 

of the local marine and terrestrial environments over time. The site is one of many on Belize's 

coast and cayes that exhibit anomalous vegetation and dark-coloured soils. These soils, 

although sought for cultivation, are not typical ‗Amazonian Dark Earths‘ but instead are 

distinctive to the weathering of carbonate-rich anthropogenic deposits. We tentatively term 

these location-specific soils as Maya Dark Earths. Our research seeks to quantify the role of 

human activities in long-term environmental change and to develop strategies, specifically 

Life Cycle Assessment (LCA), that can be applied to environmental impact modelling today. 

 

1. Introduction 

 

1.1 Scale, context, and aims of the research 

 

 Understanding socio-ecological processes at a scale at which individuals can make a 

difference is problematic when environmental and social questions are articulated at macro-

scale levels of analysis, such as ‗climate change‘. How, then, can we envision what we have 

recognised at a macro-scale—in our case, long-term environmental change—at a level at 

which we can not only ask the right questions but also articulate them so that our answers 

will have some impact on human decision-making today? At the Maya site of Marco 

Gonzalez on Ambergris Caye, Belize (Fig. 1.1), long-term environmental change is 

evidenced in dark surface soils that could not have formed naturally from local soil parent 

materials. If we keep the frame of analysis at the macro scale, we would ask what the Maya 

did to cause (produce) dark-coloured soils. To mitigate the danger of conflating hundreds of 

years of social and ecological factors into a macro-question, however, we instead view the 

dark soils as an association (Graham 2006: 58-62). We are attempting to reconstruct the long 

and complex history of soil formation processes at the site by studying the details of sequent 

human occupation and the effects over time. In this way we hope to ‗capture‘ the 

management of human actions at a level of analysis that, because it is not structured causally 

by what we know to have been the long-term result, should help in addressing decisions that 

have to be made concerning human behaviour today. Beyond recycling, which is a short-term 

concern, long-term environmental impact is not something that people generally feel 

empowered to change. Rather than battling to change human behaviour, it may be possible to 

exploit it.   

*Manuscript
Click here to view linked References

http://ees.elsevier.com/quatint/viewRCResults.aspx?pdf=1&docID=7104&rev=1&fileID=417400&msid={4C3D0C82-D93C-4555-9963-9B5BC3B81D97}


                                                                                                                                 Graham et al., Page 2 

 

 The activities associated with occupation at Marco Gonzalez—which reflect a social 

group, and at times a true community (Hegmon 2002)—comprise house construction, house 

destruction, land modification, resource procurement, rubbish deposition, shoreline fill, 

burying of the dead, production and manufacturing, and the deposition of excreta. Although 

we sometimes refer to the ‗Marco Gonzalez community‘, there is no doubt that the people 

and the nature of the social group changed through time, a period of over 2,000 years. The 

aim of the preliminary research we describe here is not to elucidate the rationale, in an emic 

sense, behind the human behaviour involved in depositional activity—except insofar as 

details help us to gauge intensity and timing. In fact, the evidence from Marco Gonzalez so 

far suggests that the soil enrichment represented by the modern dark earths was inadvertent. 

Our aim is to determine the successive effects of past behaviour. The idea that soils on the 

planet have been enriched by activities for which humans have been the catalyst is widely 

acknowledged in Amazonian Dark Earth (ADE) research (Arroyo-Kalin 2008, 2014a). In the 

Maya area, dark earths have not received much attention, mainly owing to the rarity of 

evidence of ADE-level enrichment (Beach et al. 2015: 18). The degree of enrichment at 

Marco Gonzalez is, however, significant enough (Beach et al. 2009) to warrant extending 

studies of the distribution of anthropogenic dark soils of Precolumbian origin to this region of 

the Neotropics (Arroyo-Kalin 2014a: 174; Graham 2006). 

 A key methodological issue in the study of anthropogenic soils and sediments is the 'need 

to establish adequate baselines to assess anthropogenic modification' (Arroyo-Kalin 2014b: 

282). In the caye environment, it is simpler than it would be on the mainland to: 1) identify 

the natural soil parent materials and distinguish what would be expected to be natural soil 

formation processes; and 2) identify an area that was not occupied or altered or utilised by the 

ancient Maya. The dark-coloured soils and vegetation at Marco Gonzalez are not what one 

would expect to find on an island where the soil parent materials are derived from coral and 

Pleistocene limestone of the Belize Barrier Reef (Gischler and Hudson 2003). 

 

1.2 Study area 

 

 The Belize Barrier Reef (BBR) complex runs N-S, paralleling Belize‘s Caribbean 

coastline, and marks the rim of a carbonate platform or shelf (Fig. 1.2), although the 'barrier' 

reef becomes a ‗fringing' reef in northern Belize and adjoining Yucatan (Gischler and Hudson 

2004: 223; James and Ginsburg 1979: 1). The BBR was established from ˃8.26 to 6.68 ky 

BP on Pleistocene reef limestones. At 250km long, it is the largest reef complex in the 

Atlantic and extends from the Yucatan Peninsula to the Gulf of Honduras (Gischler and 

Hudson 2004:223; James and Ginsburg 1979: 1). It includes—in addition to the islands or 

‗cayes‘ along the reef edge, of which Ambergris Caye is the largest—three atolls: Glovers 

Reef, Lighthouse Reef, and Turneffe Islands. The elevation of the Pleistocene limestone that 

underlies the majority of the reef varies from about 1m above sea level on Ambergris Caye in 

the north to ˃25m below sea level at the southern end (Gischler and Hudson 2004: 223-225; 

Purdy 1974). The high elevation of the ‗reefstone‘ (our term for the Pleistocene limestone) on 

Ambergris Caye facilitated its use in construction by the Precolumbian Maya.  

 According to Gischler and Hudson (2004: 225), knowledge of the late Quaternary 

development of the BBR is limited (although see James and Ginsburg 1979) but research is 

being carried out to address the existing lacunae (Gischler and Hudson 2004; Gischler et al. 

2000). As regards the Maya environment and available resources, the reef as we know it 

today was established by the Holocene and has been subject to similar processes since 

Pleistocene times—that is, there has been no major uplift of Pleistocene limestones, and the 

shelf lagoon between the BBR and the mainland in the north was already inundated by 5.6 ky 

BP; sea levels have, however, risen, and there has been late Quaternary subsidence along 
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offshore fault-blocks underlying the reefs, and some karst dissolution (Dunn and Mazzullo 

1993; Gischler and Hudson 2004: 232-234; Gischler et al. 2000; James and Ginsburg 1979). 

The shelf behind the reef south of Belize City receives clastic input from the Maya 

Mountains, which includes siliciclastic sedimentary rocks and granites, whereas the northern 

Belize Tertiary and Cretaceous limestones provide negligible input (Gischler and Hudson 

2004: 234). The presence of siliciclastic sediments at Marco Gonzalez can therefore be 

assumed to be anomalous.   

 The span of human occupation at Marco Gonzalez paralleled the last phase of Holocene 

sea level rise. Coastal stabilisation, sea-level rise, and back-barrier sedimentation are 

recorded in the stratigraphy of the southern end of the caye, where Marco Gonzalez is 

situated, by a transgressive sequence of high-energy beach deposits, lagoonal/inter-tidal muds 

and mangrove peats overlying an irregular surface of Pleistocene karst limestone (Dunn and 

Mazzullo, 1993). The stratigraphic (and topographic) feature of occupation is an irregular 

mound (ca. 3.5m a.s.l.) formed by decaying masonry structures, artefacts, ‗Anthrosol‘ and 

colluvium which interstratifies with peripheral mangrove and back-barrier wetland sediments. 

The vegetation that characterises the mound is topographically anomalous, and a discrete 

boundary can be observed with forest trees rising above the surrounding mangrove to heights 

of 12-15 m (Fig. 1.3). These features are characteristic of other parts of the Belize coast and 

cayes where areas of dark earth support distinctive vegetation in a zone of mangal associated 

with Maya sites (Graham 1994: 18-27; 1998: 130; 2006: 75, 76). 

 

1.3 Previous research and chronology 
 

 The site of Marco Gonzalez has yet to be extensively excavated (Fig. 1.4), and there is 

much to resolve concerning the character of occupation through time. The excavations 

carried out in 1986, 1990, and 2010, however, yielded a broad range of data with which to 

build a framework of cultural and environmental change (Graham 1989; Graham and 

Pendergast 1989; Pendergast and Graham 1987; Simmons and Graham 2015). The 

chronological sequence is derived from historical sources, relative stratigraphy and 

typological dating of ceramics recovered from successive strata, with emphasis placed on 

ceramics from primary deposits such as burials and caches (e.g., Pendergast 1979). Dates for 

Maya ceramics are known by reference to burial and cache sequences based on 

archaeological associations with inscribed monuments with absolute calendar dates (Smith 

1955; Martin and Skidmore 2012). Radiocarbon dates also contribute to the Maya lowlands 

sequence (Kennett et al. 2013). No radiocarbon dates have yet been run for Marco Gonzalez 

archaeological samples; however, identities and similarities with ceramics from other coastal 

sites, such as the Colson Point sites (Graham 1994) and Lamanai, where radiocarbon dates 

have been run (Graham 1989: 154; 2007), support the Marco Gonzalez chronology (Fig 2.1). 

 Like other sites on the island of Ambergris Caye (Guderjan 1995; Guderjan and Garber 

1995; Guderjan and Williams-Beck 2001; Guderjan et al. 1988; Guderjan et al. 1989; 

Mazzullo et al. 1994; Weinberg et al. 2003), Marco Gonzalez has supported occupation and 

activity since Late Preclassic times (ca. 300 B.C.). Because the earliest deposits are below the 

modern water table, we have yet to reach initial occupation levels at the site, but sherds from 

shell midden below the table support a date of c. 300 B.C. to A.D. 1. 

  We infer from a combination of relative stratigraphy and ceramics that Marco Gonzalez 

first saw intensive use during the Terminal Preclassic period (ca. A.D. 1-250) (Fig. 1.5). Test 

pits have revealed platform and floor construction during the Early Classic (A.D. 250-550) 

along with shell midden accumulation and a lively trade in polychrome pottery. Large 

numbers of crudely made, roughly standardised vessels (Coconut Walk ware)—thought to 

have been used in salt production—began to appear sometime in the 6
th

 century. Sherds 
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recovered from charcoal and ash layers indicate that brine was probably heated in the vessels 

to drive water off and ready the salt for shipment (Reina and Monaghan 1981). We do not 

know whether this final step was preceded by other practices that might have helped to 

concentrate the salt, such as evaporation of sea water in salt pans. Based on the evidence to 

date, after the water was driven off from the brine, the vessels were broken and the charcoal 

residues from the wood fuel, as well as the vessel fragments and ash, were collected and 

swept aside and dumped, which resulted in deposition of pyrogenic carbon. 

 Islanders seem to have focused largely on the shipment of salt during the Late Classic 

period (ca. A.D. 600-750). Production tailed off towards the end of the 8
th

 century A.D. just 

prior to the time of the Maya collapse (Demarest et al. 2008). There is no evidence at Marco 

Gonzalez, however, of the collapse that depopulated a number of mainland sites between ca. 

A.D. 750 and 1000. Instead, the site‘s occupants constructed buildings of local reefstone and 

wood over salt production debris, expanded the settlement, and buried their dead (as is Maya 

practice) beneath the floors of successive structures. Widespread trade and exchange activity 

flourished during this period and set the stage for the seaborne commerce which so impressed 

Spanish conquerors in the 16th century (Graham 2011:105-124). Most of the 49 structures 

(‗mounds‘) identified at Marco Gonzalez (Fig. 1.4) were constructed between about A.D. 750 

and 950 (Late to Terminal Classic). Occupation of most of the structures continued into the 

Early Postclassic (A.D. 950 to ca. 1200) but with modifications to terrace facings and 

significant changes in material culture. About A.D. 1200-1250 inhabitants began to drift 

away from the area, owing to mangrove encroachment and coastal sedimentation (Dunn and 

Mazzullo 1993), probably shifting just north to the site of San Pedro. Less intensive and 

apparently intermittent occupation continued through the Middle and Late Postclassic (A.D. 

1200 to 1500) and early Historic periods (A.D. 1500-1650) as indicated by the ceramics 

recovered from residential remains, surface scatter, and from offerings in a late addition to 

the stair of Str. 12, a probable residential building (Graham and Pendergast 1989). We do not 

yet know exactly when the present dark soils and vegetation developed, but given 

stratigraphic evidence to date, the process probably began in the late 13
th

 or early 14
th

 century 

A.D. when Marco Gonzalez ceased to be densely settled. 

  

 

2. Method and theory 

 

2.1 The theoretical framework  
 

 Concern with the earth as transformed by human action (Marsh 1864; Thomas 1956; 

Turner et al. 1990) is by no means new, but the consequences of human impact are viewed as 

largely negative: soil erosion, land degradation, pollution, biodiversity loss, and greenhouse 

gas production (Goudie 2006). That humans can improve soils through additives is 

acknowledged, but the idea that unintentional consequences of human depositional activity 

can result in soil enrichment receives less attention. The reasons for researchers‘ low level of 

interest in the inadvertent consequences of human activity include limited awareness of the 

intensity of human activity in the deep past (Crutzen and Stoermer 2000; Willis et al. 

2007:176); assumptions that areas of the earth‘s surface covered in plants and trees are 

representative of what is ‗natural‘ rather than managed (Balée 1994; Chase et al. 2011; 

Graham 1998, 1999); the idea that progress can only be made by considering humans as a 

unique force in nature (Steffen et al. 2011); and the high priority ascribed to intentionality in 

past human action (Glaser and Birk 2012: 39). 

 Amazonian Dark Earth (ADE) or terra preta studies have contributed most to the idea that 

long-term human impact can be measured positively rather than negatively (Arroyo-Kalin 
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2012; Glaser and Woods 2004; Lehmann et al. 2003). In the ADE context, the role of 

unintentional consequences of human activity in soil enrichment is increasingly recognised 

(Arroyo-Kalin 2014a). The connection between humans and ADEs, made in the Amazon in 

the 19
th

 century, was not widely accepted in scientific circles until the latter part of the 20
th

 

century (Sombroek 1966; Woods 2003:3). The English term ‗dark earth‘ was coined in 

Britain in 1912, but it is only since 1973 that the phenomenon has been recognised—

specifically through soil micromorphological studies—as a product of decay of the built 

environment (Macphail et al. 2003). Because many European dark earths, including those in 

Britain, are buried by later cultural deposits, the dark earths are studied for what they can 

reveal about the past rather than for their cultivability. Nonetheless, understanding what sorts 

of human activities led to dark earth formation is a critical first step in revealing the sources 

of fertility (Macphail 2010; Macphail et al. 2007), and there is growing interest in Europe in 

the persistence of dark earths (Verslype et al. 2008). Plaggen soils—an intentionally created 

dark earth the management of which goes back to the late Bronze Age—have long been 

recognised for their fertility (Blume and Leinweber 2004). We here identify an anthropic soil 

formed in a locus of Precolumbian Maya settlement, which we are tentatively calling a Maya 

Dark Earth. 

 To understand the complexities of soil-formation processes influenced by a component 

that increases fertility, studies of the constructive environmental effects of human activities 

need to expand beyond the Amazon basin. Fertile cultivable soils are associated with many 

lowland Maya sites in Mesoamerica. In the Puuc Hills, for example, the Yukatek term kakab 

refers to soils associated with ruins (Beach et al. 2015: 18; Dunning 1992: 33-58). Given the 

extensive knowledge that has accumulated on Maya civilisation, attention to such apparently 

anomalous soils is almost certain to help address basic questions regarding the formation and 

persistence of dark earths, sensu lato. 

 The Marco Gonzalez archaeological data point to a long and complex pedogenetic history 

that cannot be tied to a single episode of intentional management. Therefore we do not 

assume that the Maya were adjusting over the short term to fluctuating conditions by 

consciously guarding against species loss or land degradation, thereby effecting long-term 

adaptation. There is little doubt, however, that lowland Maya communities—in the past and 

present—developed resource practices that were adaptive (e.g., Beach and Dunning 1995; 

Beach et al. 2002; Dunning and Beach 1994, 2004a; Dunning et al. 2009; Luzzadder-Beach 

and Beach 2006, 2009); and the body of literature on Maya soil knowledge and on impacts of 

agricultural practices continues to grow (e.g. Beach et al. 2006; Beach et al. 2013; Dunning 

1992; Dunning and Beach 2004b). If episodes of intentional management existed at Marco 

Gonzalez, this will come to light through further investigation. At the analytical level at 

which we are modelling our approach, however, what matters is whether the cumulative 

effects of human activities played a significant role in shaping the soils and landscape over 

time. For the present, our methodological strategy avoids the question of 'intent' to focus on 

quantifying the physical and chemical characteristics of soils and sediments that current land 

use and archaeological evidence suggest reflect a critical type of interaction, or series of 

interactions, between the residues of human activity and the environment (Arroyo-Kalin 

2014b; Graham 1998: 121; Graham 2006.). 

 Quantification of soil and sediment characteristics as input is merely an exercise unless it 

can contribute to discriminating the effects that these characteristics have had in the 

formation of the modern landscape. Models for quantifying environmental impact in this 

manner have been developed for modern industrial contexts; Life Cycle Assessment, for 

example, is a standard technique used to measure impact over the entire ‗life cycle‘ of a 

product or process (Finnveden et al. 2009). On the premise that ancient activities such as 

Maya salt production can be analysed as we would analyse a modern industry, LCA is being 
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applied in our study. There are important distinctions, however, between modern and ancient 

application of LCA. In modern applications, the inputs and outputs of an operating process 

are well quantified and characterised, whereas inputs and outputs are difficult to quantify or 

even characterise in an application that is only accessible archaeologically.  It is also the case 

in modern applications that environmental impacts of a process are quantified as surrogate 

‗mid-point indicators‘ (i.e., proxies) and short-term impacts, because the long-term impacts 

can only be conjectured. In our archaeological application, the environmental impacts have 

actually taken place and are measurable. Although the extent of measurability from ancient 

times to the present is subject to the constraints typical of archaeological investigation (i.e., 

degradation processes over time obscure earlier environmental impact data), the final, current 

state of the local environment is accessible and can be assessed. 

 Our workplan is aligned with the standard LCA framework agreed by various 

organisations (e.g., European Commission 2009), and comprises: 

 Identification/selection of physical boundaries that define the system, the time 

frames in which activities and environmental impacts have occurred, the activities 

related to production to be included, the relevant inputs and outputs for each of 

these activities, and the environmental impacts of interest 

 Collection of data about the inputs and outputs in connection with production 

activities (inventory analysis) 

 Quantification of selected environmental effects resulting from the inputs and 

outputs of the production process (impact assessment) 

 Interpretation 

At the current stage of investigations and as the preliminary archaeological application of 

LCA, our analysis is highly localised, reflecting our focus on surface soil formation at the 

specific locations at which diachronic change is accessible through stratigraphic exposure, via 

excavation units, of sediments that have accumulated over time. The detailing required for an 

excavation unit approach (identifying the nature of the stratigraphic deposits and the material 

character of contexts in each sounding, converting archaeological data to measurable 

inputs/outputs, and determining the relevance of each dataset) will allow us to test the 

appropriateness of LCA. This process will help us to identify the potential for upscaling once 

more excavation data are available.  

 

2.2 The present study 

 

 Structures 8, 14, and 19 (Fig. 1.4) served in 2013 as test pit sites from which the samples 

reported on here were derived. 'Structures' are identified by the presence of mounds 30 cm to 

ca. 7-8 m tall. The mounds represent the ruins of single or multiple-phase constructions, 

usually masonry platforms built of reefstone that supported perishable superstructures. Three 

test pits, measuring ca. 1.5 x 1.5m, were laid out, one on the summit of each structure (Fig. 

2.1, Fig. 2.2, Fig. 2.3). The presence of burials, which we did not excavate, forced reduction 

of pit size at depth, hence the varying widths represented in the section drawings. Structures 

rather than flat areas were selected because features such as platform floors or terrace faces 

serve to protect underlying deposits.  As strata, sub-strata, and features were excavated, they 

were assigned lot/context numbers (e.g., MG 201, MG 202). 

 The construction efforts date largely to the 9
th

 through 12
th

 centuries (Graham and 

Simmons 2012; Simmons and Graham 2015). Str. 14 was partially excavated in 1990 and had 

had the bulk of its dark soil surface layers removed; it was selected, however, because it 

exhibited the full occupation sequence, and the dates represented by the strata are known. Str. 

19, like Str. 14, exhibited a full stratigraphic sequence but had not previously been excavated 

and retained the dark earth surface soil stratum.  Str. 8 was selected as an example of a locale 
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at the site periphery; intensive mixture of deposits afforded few datable contexts, but the 

section drawing is included (Fig. 2.3) to show the effects of land crab burrowing. 

 The excavation, coring, and sampling that produced the results described herein were 

undertaken in August of 2013; the vegetation survey was carried out in July and August of 

2014. The fieldwork and the ongoing analyses are geared to assess the nature of the task as 

well as to test methods of investigation; the results will be applied to more extensive research 

at Marco Gonzalez and possibly at other ‗dark earth‘ sites along Belize‘s coast. We devised 

approaches to assess both the factors that can affect soils and the contexts in which soils 

change over time. Our approaches include, in addition to archaeological methods to obtain 

cultural and chronological information: 

 Soil micromorphology and bulk analyses to assess the character of the sediments over 

time:  What materials comprise the sediments, and what are their sources? Are the 

deposits natural, cultural, mixed? What post-depositional processes (pedogenetic?) 

have or are affecting the deposits? 

 Coring of sediments to obtain information on local environmental changes: What was 

the environment prior to human habitation? What effects on the environment can be 

attributed to human activities? 

 Macrobotanical studies of both plant and woody material recovered from 

archaeological deposits to obtain information on people and the environment over 

time: What plants were available? Are imported species present? What fuel choices 

were made? Did human activities affect the ecology?  

 Identification of modern vegetation to begin to assess the relationships between 

species, patterns of growth, and environmental conditions: What species are present? 

Do these form recognisable communities that reflect particular conditions of growth? 

Can vegetation be linked to sub-soil conditions? 

 Development of a model, based on LCA: Because we know the impact of long-term 

human activity, can we quantify inputs, particularly pyrogenic carbon, and the 

relationship of inputs to output in a way that can inform modern environmental 

impact assessment? 

  

2.3 Hypotheses to be tested 

 

 The approaches described above, their attendant field methods, and their preliminary 

results are reported below. We do not yet have the data to answer all our questions, but 

progress made is best measured by the extent to which our original hypotheses are being 

addressed. These hypotheses are: 

 H1: That the MG site and its environs have changed over time, and these changes bear 

some relationship to human activities characteristic of each occupation period. 

 H2: That charcoal found with sherds from Coconut Walk pottery is spent fuel associated 

with salt production. 

 H3: That evidence of salt production exists in the form of salt pans, residues, and/or 

peripheral chemical changes in soils or ceramics brought about by high salt concentrations. 

 H4: That fuel was obtained on the island. 

 H5: That the MG dark earths reflect interaction between residues of human behaviour and 

environmental processes over time. 

 H6: That variation in vegetation species types, richness, and diversity will reflect 

anthropogenic influence/impact on local environmental conditions. 

 H7: That principles of interaction will be established with implications for modern 

practices in relation to both resource-efficient management of wastes and future land use. 
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3. The character of sediments over time: bulk soil analyses and 

micromorphology 

 
3.1 Sampling 

 

 Once the excavations were terminated and the sequence determined, monoliths for 

micromorphological analyses were removed: 3 monoliths were removed from Str. 8 (Op 13-

3); 7 from Str. 14 (Op 13-1) (Fig. 3.1), and 4 from Str. 19 (Op 13-2) (Fig. 3.2); the east and 

west faces of the Str. 14 test pit were sampled.  In addition, charred and fresh termite nests 

and two lime plaster floor fragments from Str. 8 were collected as reference material. 

Sampling included modern surface soils at 1.770m asl at Str. 19; at 2.150m asl at Str. 14; and 

stratified anthropogenic deposits as deep as -0.050m asl at Str. 14. Below this depth, 

sediments were too wet to collect intact. The upper 10cm of surface soils, including leaf litter, 

were also collected at Strs. 18, 19, and 25. Bulk soil samples were collected in the field, and 

small bulk samples were removed from specific layers of the monoliths for XRF element 

study (in progress).  

 

3.2 Methods 

 

 Monoliths were examined at the Institute of Archaeology, University College London, 

U.K. by R. MacPhail. Bulk soil analyses were carried out by J. Crowther at Trinity St 

David‘s, University of Wales, Lampeter. The soil micromorphology and bulk study methods 

were chosen following the experience of studying UK intertidal sediments and ancient coastal 

salt working (Avery, 1990; Boorman et al., 2002; Macphail, 2009; Macphail et al., 2010; 

Macphail et al., 2012).  Subsampling for bulk samples and resin-impregnation of intact 

monolith material for thin section production followed protocols (Courty et al., 1989; 

Goldberg and Macphail, 2006).  

Bulk analyses involved the testing of 39 samples for organic matter (LOI @ 375°C), 

carbonate (LOI @ 950°C) and total P, pH, specific conductance (‗salinity‘) and magnetic 

susceptibility (, max and %conv)(e.g. heating effects of climate and burning), and 10 

samples for particle size (Avery and Bascomb, 1974; Scollar et al., 1990; Tite, 1972; Tite and 

Mullins, 1971). ). Specifically, LOI (loss-on-ignition) and carbonate content were determined 

by sequential ignition: at 375
o
C for 16 hrs (Ball, 1964)—previous  experimental studies 

having shown that there is normally no significant breakdown of carbonate at this 

temperature—and at 950
o
C for 2 hours; for a separate surface soil mapping study, a 

temperature of 550°C for 2 hours was employed for LOI (Heiri et al., 2001). Phosphate-Pi 

(inorganic phosphate) and phosphate-Po (organic phosphate) were determined using a two-

stage adaptation of the procedure developed by Dick and Tabatabai (1977) in which the 

phosphate concentration of a sample is measured first without oxidation of organic matter 

(Pi), using 1N HCl as the extractant; and then on the residue following alkaline oxidation 

with sodium hypobromite (Po), using 1N H2SO4 as the extractant. Phosphate-P (total 

phosphate) has been derived as the sum of phosphate-Pi and phosphate-Po, and the 

percentages of inorganic and organic phosphate calculated (i.e. phosphate-Pi:P and 

phosphate-Po:P, respectively). 

Out of a total of 44 thin-sections, SEM/EDS (Energy Dispersive X-Ray Spectrometry) 

(Weiner, 2010) was carried out on specific features in 6 thin sections. Thin sections were 

described, ascribed soil microfabric types (MFTs) and microfacies types (MFTs), and 

counted according to established methods (Bullock et al., 1985; Courty, 2001; Courty et al. 

1989; Macphail and Cruise, 2001; Stoops 2003; Stoops et al., 2010). 
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3.3 Bulk soil results (Table 3.1) 

 

 Loss-on-ignition (LOI), which reflects a combination of soil organic matter and/or 

charcoal in the contexts analysed, displays very marked variability (range: 2.02–28.1%). As 

would be expected, the highest values were recorded in the two surface soil samples, from 

Structures 8 (LOI, 28.1%) and 19 (26.9%). Soil micromorphology indicates that in both cases 

these high values appear to be attributable both to a high soil organic matter content and to 

the presence of micro-charcoal, unlike most of the underlying stratified archaeological layers 

in which charcoal, rather than soil organic matter, is the dominant organic material. The 

surface soils are particularly organic-rich for a tropical soil in which high rates of organic 

decomposition would be anticipated.  

 All samples contain high or very high proportions of carbonate (range: 33.5–75.0%), with 

the majority containing ≥ 50.0%.  All samples analysed also display very marked variability 

in specific conductance. Two of the lowest values were recorded in the two surface soil 

samples from Structures 8 and 19, with values of 455 and 477 µS, respectively. The values 

suggest that the upper horizon of the soils is subject to some degree of leaching. The majority 

of the samples, in contrast, are much more saline (≥ 2500 µS), with seven having values ≥ 

5000 µS (maximum: 5700 µS). Although it seems likely, in this near-coastal environment, 

that the salts are largely of natural origin (saline groundwater), it should be noted that six of 

the seven samples with the highest salinity levels contain ash, charcoal and/or burnt residues.  

 Given these findings, pH analyses expectably found that the samples are all alkaline, with 

pH values ranging from 7.9–9.1. The lowest values were recorded for the two surface soil 

samples from Structures 8 and 19 (7.9 and 8.0, respectively), which is consistent with their 

notably lower carbonate content and salinity. The majority of the remaining samples have 

exceptionally high pH values of ≥ 8.5. This is likely largely to reflect the saline nature of 

many of the samples, but there does not appear to be a consistent relationship between pH 

and specific conductance. The most striking anomaly is sample xMRef3 (Lot MG 376), 

which has the highest pH (9.1) but only a relatively low specific conductance (1090 µS). 

 Phosphate-P concentrations are highly variable, with some samples exceptionally 

enriched. At the lower end, 19 samples have concentrations in the range 1.09–4.50 mg g
-1

; 

soil micromorphology indicates that these are often layers rich in burnt intertidal sediment 

fragments. The remaining 20 samples, which have concentrations ≥ 5.00 mg g
-1

, are therefore 

interpreted as displaying some degree of phosphate enrichment. Values ≥ 10.0 mg g
-1

 are 

rarely encountered in archaeological contexts and are usually associated with bone-derived 

phosphate (either actual bone fragments or residual phosphate from the decomposition of 

bone which has been ‗fixed‘ within the soil). Two of the samples have concentrations of 

10.0–19.9 mg g
-1

, classified as ‗strongly enriched‘ (Table 3.1), and nine have concentrations 

of ≥ 20.0 mg g
-1

 (‗very strongly enriched‘), with a maximum of  36.5 mg g
-1

. As is generally 

the case when very high concentrations of phosphate-P are recorded, a very high proportion 

of the phosphate present is in an inorganic form (Crowther, 2014). The nine very strongly 

enriched samples, for example, have Pi:P ratios of 96.8–99.0%. This suggests significant 

enrichment from inorganic sources (e.g. bone or and/or the accumulation of residual 

phosphate derived from the decomposition [mineralisation] of organic phosphates such as 

cess or midden materials, possibly fixed in colluvial, fine, bone-rich, calcium carbonate-rich, 

ash-dominated layers, i.e. in the x4 (lowermost Structure 14) and x13 and x14 (lowermost 

Structure 19) sample sets that show very strong enrichment (n=8). 

 Particle size analysis proved problematic owing to the large quantities of carbonate 

present (Crowther 2014). Only the surface soil from Structure 8 and sample x13c at Structure 

19 stand out as having rather more substantial and coarser carbonate-free sand fractions (~14-
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16% sand); x13c is a weathered colluvial layer at the top of ash-dominated deposits (MG 

391).  

 Magnetic susceptibility analyses demonstrated that the  values are extremely variable, 

ranging from 4.8–641 x 10
-8

 m
3
 kg

-1
. Unusually, the max values exhibit a similar range (14.8–

714 x 10
-8

 m
3
 kg

-1
) and the resulting conv values are exceptionally high (≥ 37.4%), with nine 

samples having values ≥ 100.0% (i.e.  ≥ max). These findings are anomalous, but have been 

encountered before in the study of three tropical African and Mediterranean sites (Crowther 

2014). In the published max and conv data from sites in Britain, natural levels of 

susceptibility enhancement in soils/sediments resulting from microbial ‗fermentation‘ 

processes tend to be relatively small compared with enhancement caused by burning. In a 

review of more than 1000 samples of natural soils/sediments and archaeological contexts 

from mostly British sites (Crowther, 2003), relatively few conv values exceeded 25.0%, with 

the maximum recorded in Britain being 61.1%. Tite and Linington (1975) report generally 

higher natural conv values in Mediterranean soils, which they attribute to more active 

fermentation activity, and in such environments enhancement through localised burning is 

likely to be less significant. The present results from Marco Gonzalez confirm that conv data 

are problematic from such warm environments. In these circumstances, the  data clearly 

need to be interpreted with caution, as it cannot be assumed that higher values are necessarily 

indicative of heating/burning; they could equally reflect a higher Fe content and/or degree of 

fermentation. 

 The restrictions on the interpretation of these data are discussed below in relationship to 

the soil micromorphology. For example, low values do not necessarily reflect an absence of 

burning. A relatively pure ash deposit is likely to have a low Fe content and correspondingly 

low  value (cf. sample x13b, : 17.8 x 10
-8

 m
3
 kg

-1
), whereas deposits including burnt 

ferruginous sediment inclusions show anomalously high conv values (>100%; Table 3.1) 

(Crowther, 2014). In the case of deposits that include burnt ferruginous sediment inclusions, 

the combined effects of 1) fermentation in exposed tidal mudflats (see below), where 

enhancement potential could become naturally close to 'saturation', and 2) the burning of such 

sediments (where they are found as inclusions within lime plaster floors and within the Late 

Classic processing deposits) may be responsible. The suggested strong effects of fermentation 

may therefore make indications of heating/burning less evident in both  and conv data. 

Further discussion of the LOI, carbonate, phosphate, specific conductance (salinity) and 

magnetic susceptibility appears below. 

 

3.4 Soil micromorphology results 

 

 Sixty microstratigraphic layers were identified and analysed with a maximum of 6 

microstratigraphic layers in a single thin section (a series of lime plaster floors alternating 

with occupation-trampled spreads in MG 384, Str.19, Op 13-2, assessed as associated with 

Late Classic salt working). The layers are described according to the activities they represent, 

in chronological order (see Table 3.2 for summary). 

 Terminal Preclassic (AD 100-250?)/Early Classic (AD 250-550/600) settlement 

activities and landscape development  

 Early Classic lime plaster floor constructions (AD 250-550/600) 

 Late Classic intensive processing and associated occupation features (AD 550/600-

700/760) 

 Terminal Classic to Modern activities, deposit weathering and ‗dark earth‘ formation 

(AD 760/800-Present Day) 
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3.4.1 Terminal Preclassic (AD 100-250?)/Early Classic (AD 250-550/600) settlement 

activities and landscape development  

 

 The lowermost sediments—that is, the lowermost accessible deposits before groundwater 

made sample recovery impossible—as sampled in Op 13-1, Str. 14 (MG 383) (Fig. 3.1) are 

composed of microlaminated (or burrow homogenised) compact calcitic ash in which there 

are very abundant small bone inclusions; many inclusions are fish bones, including vertebrae 

(Fig.3.3).  Notably, in Op 13-2, Str. 19 (MG 391) (Fig. 3.2), a very similar sediment type is 

present. At both locations, some bones are pale yellow to almost colourless and are probably 

poorly preserved ('partly digested') coprolitic bone, whereas orange-coloured and white 

calcined bones were probably heated and burned, respectively (Macphail and Goldberg 

2010). EDS analyses (M4D, MG 383) indicate that coprolitic bones are depleted in Ca and P 

compared to burnt bone (coprolitic bone: 36.6-37.7% Ca, 15.6-17.5% P; burned bone: 39.0-

39.3% Ca, 17.1-18.7% P). The amount of bone overall is consistent with Contexts MG 383 

and MG 391 having some of the highest phosphate concentrations at Marco-Gonzalez (22.5-

28.1 mg g
-1

 phosphate-P, n=7; see above). As two areas of the ashy matrix material were 

found by EDS to contain 1.99-3.36% P, phosphate in general could be ―fixed‖ in this 

calcareous environment (see above). It is also possible that MG 383 and MG 391 are 

waterlaid colluvial sediments, and within thin section M4C there is a 25 mm-thick coarse lens 

containing gravel-size plaster, potsherds, shell, and bone, including 5 mm-size, charcoal and 

bioclastic limestone within the uppermost part of MG 391 (Fig. 3.4). This is a higher energy 

colluvial gravel within otherwise low energy colluvium. Other bulk analyses (x4a and x4b; 

x13c-x14d) confirm the presence of only small amounts of fine charcoal/charred organic 

matter by having a relatively low LOI (3.30-5.51%). It is possible that coarser charcoal could 

have floated away, a phenomenon recorded at a number of coastal occupation sites, such as 

Mesolithic Goldcliff, Gwent and Neolithic ―The Stumble,‖ Essex (Bell et al., 2000; Macphail 

et al. 2010; Wilkinson et al. 2012). As noted earlier, the high %conv of such calcareous ashy 

deposits is difficult to understand fully, but clearly burnt non-calcareous mineral material 

associated with this ash is likely to show magnetic susceptibility enhancement.  Lastly, these 

lowermost sediments have a high specific conductance which, as noted earlier, is probably 

related to salts within the unweathered ash and also to saline groundwater effects. 

 The presence of waterlaid and waterlogged sediments is consistent with suggested lower 

base levels during the initial Maya occupation of the island, with subsequent rise in sea level 

(Dunn and Mazzullo, 1993). The sediments also record Terminal Preclassic activities which 

produced large amounts of ash, bone—both heated and strongly burnt as well as coprolitic 

bone, with much of the bone from fish. These ash and bone-rich occupation deposits were 

then subject to erosion by seasonal (?) rainstorms, with ensuing colluviation infilling low 

ground within and around the areas of occupation and into the proximal estuarine/developing 

mangrove site margins. This implies high occupation concentrations during the Terminal 

Preclassic period. 

 At both Op 13-1 (Str. 14) and Op 13-2 (Str, 19) the waterlaid ash sediments were 

biologically worked, marking a period of exposure and minor weathering (―soil ripening‖). 

Whereas in Op 13-1 the biologically worked surface was sealed by a series of lime plaster 

floors (see below—dated to the Early Classic), in Op 13-2, the uppermost biologically 

worked ashy 'soils' record midden remains (Fig. 3.5). Upwards (MG 389-386, and probably 

into Early Classic levels here) there is a 200 mm-thick series of compact ash and trampled 

occupation floor layers that are extremely rich in heated and more strongly burnt fish bones 

that are often horizontally oriented. This amount of bone is consistent with the highest 

phosphate measurement at the site, for example (x13b – 36.5 mg g
-1

 phosphate-P). 
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3.4.2. Early Classic lime plaster floor constructions 

 

 At Op 10-1, Str. 14, the biologically worked surface formed in waterlaid ashy sediments is 

dated to the Early Classic period, because constructed lime plaster floors (base of MG 382) 

(Figs. 3.6, 3.7) stratigraphically sealed two cached Early Classic basal-flange bowls (MG 

390) (Fig. 3.8). In fact, there are two distinct layers of horizontally oriented lime plaster floor 

concentrations involving 5mm to 25mm-thick and 25-35mm-long fragments, with ~25mm-

thick trampled occupation deposits between the turbated remains of the constructed floors. 

The trampled deposits include typically horizontally oriented coarse anthropogenic materials. 

The lime plaster floors are tempered with large amounts of fine to coarse-size isotropic, and 

often siliceous, microfossil-rich sediment clasts, some of which are iron-stained examples 

that show strong rubefication from being burned. These sometime diatomaceous sediments 

can be described generically as typical fine tidal flat sediments (Reineck and Singh, 1986: 

451). Their microlaminated character with oxidised (ferruginised) remains of detrital plant 

material (e.g., seaweed) is also consistent with intertidal sedimentation (Macphail, 2009; 

Macphail et al., 2010), as found in European salt marsh environments (Boorman et al., 2002). 

The lime matrix is often rich in fine burnt bone and charcoal, with thin charcoal frequently 

embedded in plastering layers. Pure lime plastering laminae could possibly be ash-rich in 

origin. Lime manufacture seems to have included the burning of siliceous sediments and 

background bone-rich midden material, whether by design or accidentally. The floors do not 

seem to include burnt shell, as found commonly in the overlying Late Classic lime plaster 

floors, whereas large amounts of shell, bioclastic limestone, bone and charcoal are ubiquitous 

in the trampled occupation deposits. The burnt inclusions are typical of lime plasters in 

general (Karkanas, 2007), although as regards acid-insoluble materials, the absence of quartz 

and the presence of large amounts of isotropic siliceous ‗clay‘ seem to suggest some possible 

differences between these floors and examples from Guatemala, probably owing to the 

materials available at Marco Gonzalez‘s marine location. The ‗chaotic texture, however, with 

a highly random aggregate particle size‘ seems to be a ubiquitous characteristic (Hansen et 

al., 1996). 

 

3.4.3 Late Classic intensive processing and associated occupation features 

 

 In Op 13-1, Str. 14, the layers reflecting intensive processing (salt?) were examined from 

ca. 2.075-1.070 m asl (MG 359-377) (Fig. 3.1) on the east face above the masonry platform 

(MG 382 in Fig. 3.1). On the west face, the layers had subsided into a gap within the rock 

platform (Monolith 5) so that they extended downwards to 0.530 m asl (MG 377 within MG 

382). A range of layer types can be described. These are: 

a) little disturbed and sometimes totally in situ ashy combustion zones,  

b) in situ lime plaster floors,  

c) chaotically mixed burned sediment clast layers, with various proportions of ash and 

coarse charcoal present, and  

d) trampled occupation surfaces showing minor weathering features and bone-rich midden 

waste. 

 a) Totally in situ ashy combustion zones. These ashy hearth/combustion zone layers, 

including massive cemented ash and little-weathered ash layers, also display horizontal ash 

layers thinly interbedded with charcoal (in situ hearths) (Figs. 3.9, 3.10). For example, at the 

base of MG 374, small in situ fires with 0.5-1.5 mm-thick ash and charcoal layers are present; 

it is suggested that these represent fuel layers that were originally ca. 75-225 mm thick 

(Courty et al., 1989). One such series of small fires reddened (rubefied) the uppermost 15mm 
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of the 40mm-thick lime plaster floor that capped MG 377 (Figs. 3.1, 3.11) (see below). Such 

small fires would have produced low-temperature heating consistent with boiling brine. 

 b) In situ lime plaster floors  In Op 13-2, Str. 19, an extensive sequence of lime plaster 

floors, with trampled occupation soils between, occurs above 1.085 m asl (MG 386) (Fig. 

3.2). In Op 13-1, Str. 14, a similar sequence begins at a depth of 1.070 m asl (MG 377 to MG 

364) (Fig. 3.9).  At both locations, the floors include very large amounts of shell tempering, 

as well as burnt shell of presumed burnt lime origin. As in the Early Classic floors, a major 

component is clasts of tidal flat sediments rich in siliceous microfossils. As noted above, in 

Op 13-1, Str. 14, it is clear that there are examples of lime floors on which small fires were lit 

(Fig. 3.10). In Op 13-2, Str. 19, however, the sampled floor sequence seems also to record 

occupation trample between the floors (see below), perhaps indicating domestic activities and 

not exclusively processing (salt-working?) activities, as indicated in Op 13-1, Str. 14.  

 c) Chaotically mixed ashy and burned sediment clast layers  

 At both Structures 14 and 19 there are >1-2m thick layers of pink lime plaster floors 

alternating with mixed ash and burnt sediment-rich layers (see Figs. 3.1, 3.2). They are 

alkaline (pH 8.9) and highly saline (specific conductance [µS] of ~3000-5000), with 

apparently strongly enhanced high magnetic susceptibility values (see above). On the other 

hand, they often have relatively low amounts of phosphate (unlike midden occupation floors 

– see below). In addition to charcoal and ash, their other chief component consists of 

sediment clasts. The clasts are composed of 1) calcareous and often fossil-rich sediments and 

2) much higher quantities (than the calcareous sediments) of isotropic and siliceous 

microfossil (diatom)-rich sediment materials, which, as suggested above, can be described as 

tidal flat sediments (Figs. 3.12 to 3.15). When the siliceous sediment clasts include iron-

staining features, they are markedly rubefied, which indicates subjection to heat or fire; other 

burnt iron-stained diatomaceous clay fragments occur within lime plaster floors. The 

rubefication is indicative of temperatures around 300-400°C (Dammers and Joergensen, 

1996), especially as no more strongly altered or vitrified mineral material was found at the 

site (Berna et al, 2007). The ubiquity of these burnt intertidal sediments is also consistent 

with the magnetic susceptibility and specific conductance data. As noted previously, the 

exposure of tidal flat sediments and the resulting concentration of salt are also probably 

linked to fermentation and a naturally strongly enhanced magnetic susceptibility consistent 

with a sub-tropical climate. Why is this burned sediment here, however? As a further 

consideration, we note that whereas most sherds from the excavations show only a loose 

coating of background matrix material, two large pottery fragments from processing contexts, 

MG 374 and MG 377 (Fig. 3.2), retain coatings on their interiors formed of the siliceous, 

microfossil-rich salt flat sediment (Fig. 3.11), which suggests an association between the 

heating of the vessels and the tidal-flat sediments. 

 d) Trampled occupation surfaces showing minor weathering features and bone-rich 

midden waste. These surfaces were detected in the west face of Op 13-1 and seem to be 

processing debris (MG 377 within MG 832, not apparent in Figs. 2.1, 3.1) that was either 

dumped, spread, or left exposed owing to a shift in the active processing locale. The deposits 

here are often compacted and finely fragmented, with horizontal fissuring and horizontally 

oriented coarse inclusions, which typifies such trampled surfaces (Cammas et al., 1996; 

Courty et al., 1994). The layers include shell, heated and strongly burnt bone, with much fish 

bone and some fine cess fragments in places, producing marked phosphate enrichment (x5b: 

18.7 mg g
-1

 phosphate-P) (Fig. 3.13). Of note is the occurrence of coarse shell fragments that 

enclose calcitic, fossiliferous sands of presumed coral beach origin (Fig. 3.17). This suggests 

that molluscs such as conchs were processed and then the shells dumped at site peripheries, 

where coral sand was washed into them; the shells were later collected for various purposes 
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(construction, lime making) and became incorporated in occupation deposits above the beach 

line.  

 

3.4.4 Weathering and ‘Maya dark earth’ formation 

 

 Weathered deposits and dark earth soils are encountered in increasing amounts upwards in 

both Ops 13-1 and 13-2 (Strs. 14, 19).  We infer from the fragments of the lime plaster floors 

(referred to as YB, W or GB in the section drawings, which are designations for degrees of 

staining) that the processing levels were once thicker--that is, there was more accumulation 

than is now visible in the sections--but have been heavily disturbed.  Disturbance (beyond 

roots, crabs and other non-human interference) first took place towards the end of the 8th 

century, when the standing accumulation of processing debris served as the core of platforms 

faced by reefstone that supported pole-and-thatch buildings.  These are the structures shown 

in Fig. 1.4, although many of them were added to and modified up to the 13th century, 

followed by intermittent use or alteration through modern times. 

 As if the actual construction activities were not enough disturbance, the Maya practice of 

burying their dead beneath the floors of buildings served very well in intruding into and 

heavily mixing the processing levels. Less than half of Str. 14 has been excavated (in 1990 

and 2010), yet the area (c. 12 m
2
) produced 38 burials.  The Op 13-2 test pit (Str. 19) and Op 

13-3 (Str. 8), neither of which had been excavated before 2013, produced a minimum of three 

relatively coherent burials each plus random skeletal parts. Because the Maya disturbed older 

burials in the process of excavating new graves, it is common to find interments with bones 

from several burials; crab activity then helps to scatter bones throughout deposits (Fig. 2.3). 

How deeply the ancient burial activity intruded is difficult to say because it depended in part 

on how long the building was occupied, but in Op 13-2 (Str. 19) the burial disturbances seem 

to diminish at about 70cm below the ground surface. 

 Once the locale was no longer the site of an active trading community, ca. A.D. 

1200/1250, land crabs (Cardisoma guanhumi), which must always have been active, 

increased their activities. Much of the disturbance visible in the sections is attributable to land 

crab burrowing. The crabs burrow down to the water table and in the process bring artefacts, 

sediment, and material up to the surface. When they abandon their burrows, the walls 

collapse and material is carried downward. From the point of view of someone interested in 

how soil horizons can change and develop, they are important agents in mixing deposits and 

may be key factors in the wide distribution of remains such as pyrogenic carbon.   

 In addition to Maya construction and inhumations and crab activity, there is the ubiquitous 

perturbation from roots, insects and other invertebrates. Thus dark earth is found to penetrate 

deeply into extant stratified deposits. One of our ultimate goals is to estimate the 'normal' 

depth of weathering and dark earth formation, but a great deal of surface soil has been 

removed by locals for gardening purposes, and we need to know more about the site's history 

in order to develop a strategy that will yield reasonably accurate results.  

 For the present, we are focusing on the recognisable pedological processes affecting the 

archaeological layers. The most obvious post-depositional processes affecting the site are 

fragmentation and partial dissolution of ashy and lime plaster floor remains, which can be 

observed as 'ghost' layers (e.g. MG 359, Op 13-1, Str. 14) (Figs. 3.1), especially in burrows 

and other disturbances. Heavy fragmentation and dissolution of floor remains are 

characteristic of Op 13-3, Str. 8 (see Fig. 2.3). We cannot be certain, but it appears that the 

salt processing deposits were either exposed for a long period before construction of Str. 8, or 

construction was less substantial and afforded less protection from the elements.  

 In any case, where once stratified deposits occurred, a generally calcareous (carbonate 

rich) and moderately humic soil formed, characterised by thin to broad organo-mineral 
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excrements of small invertebrate mesofauna. The pH is still alkaline, but leaching seems to 

have greatly reduced specific conductance in Op 13-2, Str. 19, some 30cm below the modern 

topsoil (e.g. as low as 184 µS in sample x12a). In Op 13-1, Str. 14, because ca. 1 m (surface 

soil, burials, building floors) had been removed before 2013, and plastic had been laid down 

to mark the level at which the excavations ceased, specific conductance shows less leaching 

(697 µS in sample x1a), while the remains of burnt debris and lime plaster containing burnt 

material allow maintenance of an enhanced magnetic susceptibility.  

 The weathering effects on ash and lime-based construction materials and deposits can 

readily be compared to the breakdown of Roman stratified levels, where ash and lime-based 

construction materials were common. Such processes have been modelled since the 1980s 

(Cammas, 2004; Macphail, 1983, 1994). More recently, the weathering of limestone and 

stucco (lime plaster and mortar) at Late Classic Maya sites in the Yucatan Peninsula (Río Bec 

and Dzibanché) have been investigated (Straulino et al., 2013). Of note is the common 

observation of carbonate dissolution and ensuing secondary recrystallisation of calcite. At 

Marco Gonzalez, plaster surfaces within the dark earth (and sometimes lower down in the 

sequence) often show total dissolution of the CaCO3 matrix, whereas only a few mm below 

these same surfaces, recrystallisation in the form of micrite had occurred. In other words, the 

floor layer is characterised by a narrow topzone of dissolution below which is recrystallised 

calcite, which gives the lime plaster floors a banded appearance (Fig. 3.10). The soils 

associated with the weathered levels are dark because they are characterised not only by 

increased amounts of surface soil humus but also by high concentrations of very fine charcoal 

(rather than so-called highly residual ‗black carbon‘ [Sørensen, 2007]), presumably owing to 

relict charcoal-rich layers within the processing contexts (Fig 3.11). The colour of European 

dark earth has exactly the same character. London dark earth has much higher amounts of 

cations—producing cation-humus complexes—compared to the local natural soils and 

sediments. This is probably the case at Marco Gonzalez, although in bulk-measured amounts, 

the dark earth and surface soils contain less Ca and NaCl compared to the underlying well-

preserved levels (Courty et al., 1989, 261-268, fig 15.2b; Macphail and Courty, 1985). 

 Surface soil (0-5cm) examples from Ops 13-3 and 13-2 (Strs. 8 and 19 respectively) are 

characterised by broad humic organo-mineral and extremely thin organic excrements (Table 

3.2), which together produced the highest organic content  (26.9-28.0% LOI, including 

amorphous humus and ageing plant remains of roots and leaf litter, Mull horizon) (Table 3.1, 

0-5cm samples). They also demonstrate strongest decarbonation and leaching of saline salts 

(combining to produce some of the lowest CaCO3 [35.1% carbonate], pH [7.9] and specific 

conductance [455-477µS] at the site) (Table 3.1, 0-5cm samples). Furthermore these surface 

soils often have the greatest amount of acid-insoluble quartz sand (~8-14%) compared to the 

underlying archaeological levels. Quartz sand deposits do not occur on the caye; the nearest 

source of quartz is mainland northern Belize, although here the quartz is confined to deposits 

of reworked and redeposited old alluvium along drainage systems (Howie 2012: 69). Farther 

south, quartz is a component of the sediments deposited by younger alluvium associated with 

the Maya Mountains (see sources in Howie 2012: 60-8). Given that many of the ceramics 

found at Marco Gonzalez are tempered with quartz sand--or are made of non-local clays with 

naturally occurring quartz (Teal 1984; Ting 2013), the presence of quartz is likely to be the 

result of the weathering of anthropogenic materials such as the pottery, although quartz as an 

additive may have been used in other materials, such as floors, ovens, or daub. Phosphate 

enrichment of surface soils is possibly complicated both by the amount of relict bone from 

midden activity and decomposition of so many inhumations. 

 

 

4. Local environmental change: sediment coring 
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4.1 Sampling, methods 

  

 Sediment coring was undertaken in 2013 to investigate the extent and nature of anthrosol-

derived material in the coastal margin of the site (Fig. 4.1). As sea level during the earliest 

known occupation phase, c. 2000 B.P., was approximately 0.3 m below present level and 

activities such as salt production are assumed to have occurred close to or within the inter-

tidal zone, a series of short (1-2m) cores on a 150m transect extending out from the site were 

collected for detailed stratigraphic analysis. Additionally, in the search for a continuous off-

site depositional record of environmental change at Marco Gonzalez, a sediment core was 

collected from a pool found at the SE edge of the site (Fig. 4.1). A short core was also 

collected from a distant, uninhabited and recently formed back barrier sand bar with 

colonising vegetation (lon-87.869122º, lat 18.187373º) to assess compositional changes seen 

in an undisturbed carbonate to estuarine mud sequence analogous to pre-mangrove conditions 

at Marco Gonzalez. 

 To assist in understanding the relationship between occupation, soil development, and 

inputs of anthrosol into marginal wetland sediments, surface soil samples (5cm-10cm depth) 

were collected from across the archaeological site for multi-element geochemical analysis. 

Samples (n=85) were collected from locations chosen by randomly generated coordinates, 

although this system was influenced by ground conditions and GPS signal. A random 

sampling strategy was applied to avoid influence of preconceived differences between soil 

composition and proximity to structures, vegetation types, and elevation.  

 Although full-profile analyses are preferred in assessing broad soil development, near-

surface samples are viable for measuring and mapping geochemical differences in 

heterogeneous soils influenced by anthropogenic contamination (Johnson & Ander, 2008). 

Mixing of deep and surface soil at the site is a result of collapse and weathering debris from 

structures, excavation and looting pit spoil, and bioturbation from tree-throw heave and land 

crab burrows. Near-surface soil (upper 0-5 cm) was removed from the samples to minimise 

large uncertainties resulting from measurement of recent soil, leaf litter and fire ash. As well 

as assessment of compositional differences, a specific enquiry is whether elevated 

concentrations of metals reflect past Maya occupation activities at the site (Cook et al. 2006). 

 

4.2 Preliminary coring results 

 

 Stratigraphies of cores collected from the distal and marginal ends of the coring transect 

show contrasting depositional histories. In the mangrove core (MG01) (Fig. 4.2) 

approximately 100m from the southern edge of the site, a transition between lagoonal, tidal 

sandy muds and mangrove colonisation is recorded in 1m of sediment. Below 1m, water-

saturated shelly muds impeded collection, although samples of compact white silty carbonate 

mud were retrieved between 1.6 and 1.7 m below surface.  A levelling survey revealed that 

the mangrove surface is approximately at sea level (+0.1m).  

 Mangrove 1 [MG1]: (Figs. 4.1, 4.2) Measurement of dry weight, organic and carbonate 

content of the sediment intervals shows a gradual transition from carbonate sandy mud (pre- 

3000 BP) through finer-grained lagoonal mud to mangrove mud and peat. The greatest extent 

and occupation of MG span this transition. Sherds and worked conch fragments were not 

found in this core. Mangrove systems are efficient trappers of inter-tidal sediment, and hence 

the observed transition to more terrestrial elements may be a response to broader Classic-

period climate, erosion, and sediment transport into Chetumal Bay (Beach et al. 2008).   

 Mangrove 4 [MG4: (Figs. 4.1, 4.2) This core proximal to the site comprises an 0.8 m 

sequence of silty, relatively low organic content mud packed with waste products of coastal 
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resource use and occupation, i.e. ceramic sherds, conch shell, fish vertebrae, and chert 

microliths. At 0.8 m to 1.3 m below the surface is a matrix of coral sand and large (ca. 5 cm) 

fragments of ceramic and processed conch. This basal deposit reflects early occupation of the 

site and either direct dumping or short-distance transport in a coastal setting during rising sea 

levels (before c. 2000 yrs BP). The upper unit appears to represent the transgressive 

lagoon/estuarine fill following stabilised sea levels and Classic period Maya occupation of 

the site. Although only metres distant from current mangrove, the core yielded evidence in 

the upper 10 cm of organic-rich mangrove mud.  More detailed geochemical analysis of this 

core is underway. Evidence from cores logged between the two ends of the transect shows 

that the lower coarse anthropogenic waste unit extends an additional c. 30m distance. This 

apron of buried waste material is unlikely to extend out uniformly around the site but it is a 

significant extension to the area for archaeological investigation. 

 Plaza Cores [P1-3]:  (Fig. 4.1) Exploratory pits dug in the east-facing depression north of 

Strs. 12 and 14 revealed a 0.5-0.6m thickness of artefact-rich colluvium above saturated 

shelly/coral sands. The position and stratigraphy suggest that this area may have been an 

open embayment during occupation. 

 Preliminary stratigraphic results from the sediment sequence collected from the open-

water east of the site are comparable to the changes seen in MG1: lower carbonate sandy 

muds replaced by abundant organic and terriginous-element muds. Fragments of conch and 

ceramics were not found in the 0.6 m-deep core. This core is being used for palaeoecological 

analyses (diatoms and pollen) to provide more offsite palaeoenvironmental evidence and is 

also being used to investigate recent geochemical and contaminant fluxes. 
210

Pb dating   

provides a well constrained chronology of the last 100 years in the upper cm of the pool 

sediment. 

 Preliminary results from surface soil survey of Marco Gonzalez: (Fig. 4.1) Surface soil 

samples have been measured for organic content (LOI @ 550°C for 2 hours [Heiri et al. 

2001]), magnetic susceptibility, and bulk geochemistry (XRF). All samples have been freeze-

dried and sieved at 125 micron prior to measurement and milling for XRF analysis. 

 The organic content of the soils was measured by LOI as a precursor to geochemical 

analysis because many elements are strongly associated/adsorbed into organic matrices. The 

organic content of the surface soil is noticeably higher (>20%, max 40% LOI) in the central 

area of the site where the majority of the structures are located, but also where leaf-litter is 

abundant. Lowest values occurred in non-vegetated areas, often with an abundance of surface 

sherds. Owing no doubt to the significant effect of recent plant matter, the organic content 

(LOI h15 mean=18.2) of the surface soils is higher than in dark earth soils encountered in the 

Amazon (<12% LOI) (Arroyo-Kalin, 2010), in the Maya lowlands (<16% LOI) (Beach et al. 

2005), and in archaeological contexts at depth at MG (<10% LOI). Identification of a soil, 

perhaps incorrectly, as a dark earth by its increased ‗organic‘ content alone, especially as 

measured by LOI, is highlighted by charcoal-prolific contexts from Str. 14 that only 

generated an LOI <20%. Significantly higher magnetic susceptibility values are also 

concentrated in the central area, possibly associated with leaf litter/topsoil bacterial redox 

processes, but also the presence of fired ceramics and burnt soil matter. 

 

5. People and the environment: macro-botanical studies  
 

5.1 Sampling, methods 

 

 Archaeobotanical samples were gathered through flotation of sediment samples from 

across the 2013 excavations as well as via water screening (1/2, 1/4, 1/8 in. mesh), and 

retrieved by hand through excavation. Both woody and non-woody macrobotanicals were 
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collected for identification and to quantify the density of pyrogenic carbon in the deposits. 

Flotation followed the manual, decanting, bucket flotation method (Fuller 2007: 197; Pearsall 

2010), whereby the sediment sample and water are agitated and the floating material is 

decanted through a cloth sieve; the process is repeated until no further charred material is 

recovered. Approximately 20 litres were sampled from each context and floated in 2-litre 

subsamples, passing the flot through a 250-micron mesh. The heavy fraction, which was 

observable in the bucket but did not float, was poured through a 1mm mesh to ensure 

maximisation of recovery. Dried flots were sieved using 4mm, 2mm, 1mm and 500 micron 

geological brass sieves before sorting. Charred material was first separated from other 

organics to allow volume and mass measurements for pyrogenic carbon in each deposit. 

Identifications are being undertaken using reference material collected at Lamanai and 

Ambergris Caye during the 2014 season. Additional reference materials are available at UCL, 

the Royal Botanic Gardens, Kew, and the Royal Botanic Garden Edinburgh.  

 With regard to wood charcoal content, flotation samples are sorted in the lab to recover all 

fragments of the absolute minimum size (>2mm) required for identification. Microscopic 

analysis of the wood charcoal follows standard procedures (Hather 2000). Quantification of 

the charcoal macro-remains proceeds through presence/absence analysis (Popper 1988). At 

present, there is no comprehensive single resource dedicated to the anatomy of woods from 

Belize or Neotropical Central America as a region. To determine the identity of the woods 

present, reference will therefore be made to: 1) the existing atlas of woods from adjacent 

regions (Uribe 1988); 2) internet identification resources, specifically the NCSU Libraries‘ 

‗InsideWood‘ database (InsideWood); and 3) direct comparison with thin-section and 

charcoal reference material, including that collected during the 2014 field season.   

 

5.2 Preliminary results 

 With regard to non-woody macrobotanicals, only contexts from Op 13-2 (Str. 19) (Figs. 

2.2, 3.2) have been analysed to date; the preliminary results from the lowest levels of Op 13-2 

support the initial soil micromorphology findings, which suggest different activity phases. 

The two lowermost Terminal Preclassic to Early Classic samples (from MG 393 and MG 

391/392) contain a large number of Zea mays (maize) cupules and Byrsonima sp. (craboo or 

nance) seeds that are absent in the overlying late Early Classic and Late Classic levels (MG 

386 and MG 375 respectively). Neither of these species grows naturally in coral sand 

environments and both are believed to have been imported. Zea mays and Byrsonima sp. are 

well known Maya subsistence items (e.g. Miksicek 1991), and their presence is consonant 

with the midden and hearth contexts identified through soil micromorphological analysis, 

together with the excavated evidence of fish bone, net sinkers, and pottery sherds.  

 The overlying stratum MG 386 (separated from MG 391 by a hard-packed surface or 

floor, MG 389) is dominated by wood charcoal, which suggests a shift from the kinds of 

domestic food-processing activities reflected in Terminal Preclassic and Early Classic levels 

(A.D. 1 to c. 550) to a fuel-intensive, larger-scale processing activity (c. A.D. 550-760). MG 

386 and 389 correspond to the phosphate-rich series of compact ash and trampled occupation 

floors identified by soil micromorphology, with strong evidence of heated and burnt fish 

bones. Further analysis of these and the remaining 2013 contexts is anticipated in the coming 

year, and it is hoped that the results will shed additional light on the nature of occupation and 

the sources of pyrogenic carbon in the soils.  

 

6. Modern vegetation and conditions of growth 

 
6.1 Sampling, methods  

 



                                                                                                                                 Graham et al., Page 19 

 

 The aim of this initial part of the project was to provide baseline data on the current 

species composition at Marco Gonzalez. Investigations of patterns of within-site variation in 

species richness and composition were also begun, based on differences in soil depth and 

localised substrate characteristics. Vegetation sampling was addressed in two ways. First, 

sampling proceeded along four transects (north-south; east-west; north east-southwest; north 

west-southeast), all of which pass through the central (highest/deepest) part of the site to the 

periphery. This allowed recording of variation in soil profile depth, while allowing for the 

possible confounding influence of aspect (direction, e.g., leeward- or windward-facing) (Fig. 

6.1). Second, non-linear sampling involved recording abundance of plant species within 45 

randomly positioned 10 by 10 m plots (Fig. 6.2).  

 

6.2 Preliminary results 

  

 Sixty-four plant species were identified from Marco Gonzalez. The forest at the centre of 

Marco Gonzalez is characterised by tree species such as Bursera simaruba, Coccoloba 

diversifolia, Metopium brownei, Pouteria campechiana and Citharexylum caudatum. Thrinax 

radiata is ubiquitous in the understory alongside Picramnia antidesma, although it has 

perhaps been encouraged by clearing of the site to allow for excavations in 1986 (Graham 

and Pendergast 1989). There is a stand of Cocos nucifera, which is thought to be of plantation 

origin, although it is currently restricted to small patches. At the woodland periphery, there is 

a higher proportion of more salt-tolerant plants in a transition to the mangrove swamp.  The 

woodland periphery is represented by a slightly different community, characterised by 

Pithecellobium keyense, Sideroxylon americanum and Hyperbaena winzerlingii, with 

monospecific patches of Gulf Cordgrass (Spartina spartinae) or Swamp Flatsedge (Cyperus 

ligularis) in the lowest-lying areas that are not dominated by mangrove trees.  The gradient in 

vegetation type from the higher areas in the centre of the site to the lower-lying periphery 

follows ecologically reasonable expectations and indicates that plant community composition 

may be related to soil depth. More detailed contour mapping as well as expanded excavation 

is necessary, however, to yield information on the nature of the subsurface deposits, which 

can then be related to surface vegetation. 

 The current species composition at Marco Gonzalez reflects complex factors, conditions, 

and history. Several factors add complexity to the historical interpretation of current species 

composition; amongst these are: a) The time that has passed since the site was intensively 

occupied (c. A.D. 1200/1250) is long enough to have accommodated several generations of 

forest trees and the period of generational turnover is probably shortened by the site‘s 

exposure to hurricanes; b) Intensive occupation ceased about 700 years ago but intermittent 

occupation continued at least until the historic period. Recent human introductions (e.g. 

Cocos, Terminalia catappa) and modifications (clearance, extracting soil) are likely to have 

altered the structure and composition of modern vegetation; c) The environment of Marco 

Gonzalez, owing to the site‘s coastal location, differs substantially from the mainland Maya 

sites that have undergone botanical survey, and therefore findings from mainland studies on 

the effects of Maya settlement and resource exploitation may not be strictly applicable to 

Marco Gonzalez. 

 Plant communities at coastal Maya sites (sensu stricto) in Belize remain largely un-

circumscribed. There is no existing description of a specific type of plant community 

associated with coastal Maya sites on anthrosols in the region, which means that there is 

nothing, at least at present, with which to compare the site. Furthermore, the plant 

communities cannot reasonably be expected to match those of the mainland. However, 

species presences at Marco Gonzalez ordinate well amongst the ‗Cay forest‘ classification of 

Murray and colleagues (1999) and Cay Broadleaf Forest (Stoddart 1962). Characteristic 
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species described in these studies, although relevant to Turneffe Atoll, include Bursera 

simaruba, Metopium brownei, Cordia sebestana, Coccoloba uvifera, Thrinax radiata, 

Pouteria campechiana and Pithecellobium keyense, all of which occur in abundance at Marco 

Gonzalez. Where these habitats are described (in Murray et al. 1999), it is in the context of 

naturally developed forest rather than that of land husbandry. These descriptions were, 

however, made as part of a broad geographical circumscription and investigators may well 

have overlooked the influence of anthrosols, especially considering that Maya sites have been 

reported both from Turneffe Atoll (MacKie 1963) and Glovers Reef Atoll (Graham 

1997,1998). 

 The survey reported here constitutes a pilot approach to vegetation description of the 

habitat type in the context of dark earth soils. Anecdotal comparisons, derived from 

walkthrough survey at another Maya site on Ambergris Caye (Chac Balam, N18.17829 

W87.86796 NAD 27 Central) (Guderjan 1995; Guderjan and Garber 1995) reveal further 

consistencies in composition and physiognomy and suggest that longer-term studies may 

reveal patterns in the association between dark earths and the ‗cay forest‘ system.  Elsewhere 

on Ambergris Caye, vegetated parts of the island that were not occupied by mangrove and 

which displayed no archaeological evidence exhibited soils that were observed to be too thin 

and sandy to accommodate forests; the vegetation in these conditions forms thickets of 

drought-adapted shrubs.  

 The mainland Maya are well known as pioneers of sustainable forest management under a 

forest garden or Pet kot system (Ford and Nigh 2015; Gómez-Pompa 1987), which aims to 

maintain high levels of diversity of species which have many uses in a domestic setting. 

Associations of Maya sites in mainland Yucatan and the wider Maya region with forests that 

contain high representation of useful species is a well-recognised phenomenon (Puleston 

1968, Gómez-Pompa 1987, Rico-Gray and García-Franco 1991, White and Hood 2004, Ford 

2008, Ross 2011).  Prevalence of domestically useful trees in these forests has given rise to a 

concept of the ‗Maya tropical forest‘ (Nations 2010), uniformly abundant in useful species 

and which has persisted owing to positive anthropic selection. 

 The extent to which this recognized diversity represents persistent regeneration of initially 

favoured trees has been called into question, as abundance of useful species may reflect 

ecological characteristics which enable survival in niches created, purposefully or otherwise, 

by human modification of the environment (Rico-Gray and Garcia-Franco 1991). Therefore 

the presence of diversity of species, many of which are considered useful, in mature forest 

communities in the Maya region is best envisioned as a function of ecological characteristics, 

independent of whether or not species were introduced in the first place by the Maya in the 

past. A well-known example is the association of Brosimum alicastrum (ramon nut tree) with 

the edges of limestone structures high in exchangeable C and Mg (Lambert & Arnason 1982), 

which conflicts with previous assertions that the abundance of ramon at Maya sites was 

related to its use as a food crop (Puleston, 1968).  

 Physically, as regards structural characteristics, forests at Maya sites may include sparser 

distribution of much larger trees than untended woodland, which generally exhibits structural 

complexity and greater variation in age and sizes of individuals (White and Hood, 2004). The 

pattern of scattered distributions of very old trees (few, large individuals) is consistent with 

the structure of historically managed wooded landscapes in Europe, such as pasture 

woodlands (Vera 2000, Rackham 2009).  However, another reason for development of this 

open structure at Maya sites could be that continued management has aimed to preserve 

archaeological features by ‗bushing‘ or selective clearing (White and Hood, 2004). 

 

  

7. LCA modelling 
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7.1 Sampling and methods 

 

 At this early stage we are in the process of determining the appropriate time frames for 

LCA sub-systems (e.g., A.D. 550/600 to 760/800 for salt production); defining the sectors of 

activity relevant to the specific excavation locations (domestic activity, interments, caching, 

brine boiling); distinguishing the relevant inputs and outputs for each sector (wood charcoal, 

lime, human waste, midden accumulation, organic and mineral waste); and describing surface 

soil characteristics and vegetation suites as the indicators of environmental impacts.  

 Excavation, wet screening, and flotation (with wet-sieving) enabled capture of materials 

(inventory) to be quantified as inputs, and in some cases outputs, for the model. Recovered 

materials include: ceramics, bone (e.g. human, fish, mammal, reptilian), shell, conglomerates, 

coral, foreign stone (e.g., chert, granite, obsidian), macrobotanical plant remains, and black 

carbon. The materials that are comminuted are in the process of becoming sedimentary 

deposits, but methods are being devised for their quantification so that both large and small-

fraction measurements can be included in the model. LCA requires quantification of the 

material flows (inputs and outputs) of systems and sub-systems to allow an overall 

assessment of environmental impact. The density of materials in each stratum, as outputs of 

cultural processes, is being calculated using volumes and masses of the water-screened 

samples and also the pyrogenic carbon from the archaeobotanical flots. In addition, chemical 

and mineralogical characterisation data from the soil micromorphological investigation are 

being used to develop estimates of large-scale material quantities that have contributed to soil 

composition at the microscopic level. 

 

7.2 Results 

 

 At the present time, we are at the stage of distinguishing and measuring the material 

inputs, as described above. We now have base-line information on the site‘s environmental 

history, and information on the current state of the environment such as the vegetation suite 

and surface soil characteristics. Impacts are in the process of being characterised via mid-

point indicators that will be used to suggest the potential impact from ancient activities and 

their material residues. For example, the presence of pyrogenic carbon can be used as a proxy 

for increased soil fertility, as the association has been suggested in Amazonian research (e.g. 

Arroyo-Kalin et al. 2009, 113-114, 119). From the quantified outputs in the inventory 

analysis, we are moving towards being able to define the availability of materials and 

chemicals, which can then be compared to information about the current environment to 

determine if outputs could be the source of recognised impacts. For example, the density of 

fish bone is being calculated for a given context, the composition of which can then be 

approximated (e.g, Toppe et al. 2007); this will provide estimates for the availability of 

elements such as calcium, phosphorous and iron, all of which can affect soil fertility. This 

availability can then be compared to surface soil chemistry to pinpoint potential origins for 

surface soil signatures.  

 

8. Conclusions and future research 

 

8.1 Addressing the hypotheses 

 

H1: That the MG site and its environs have changed over time, and these changes bear 

some relationship to human activities characteristic of each occupation period.  
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 Data on addressing H1 have come from sediment coring, bulk soil and 

micromorphological studies, and marcobotanical remains. Distinct stratigraphic changes 

revealed in sediment cores record transgressive sedimentation, mangrove development and 

incorporation of human detritus, all of which indicate that throughout human occupation, a 

dynamic coastal system prevailed. Both the dynamic conditions and the evidence for long-

term occupation tell us that occupants would have been required to adjust to the changing 

coastal landscape and seascape.  

 The location (southern end of the caye with access to both windward and leeward 

maritime travel), surface elevation, and sediments (produced by Holocene coastal changes) 

generated the initial conditions for occupation and utilisation of resources (Dunn and 

Mazzullo 1993). After initial settlement, the site developed as a result of varying degrees and 

combinations of intended and unintended consequences. Waste, such as discarded shells from 

processing conch, was deposited as near to production locales as possible without 

immediately affecting working/living at the time, but it is also possible that such deposition 

was known to encourage expansion of areas above the tidal limit (by fine-grained 

sedimentation). Preliminary geochemical data in cores show a distinct transition from 

carbonate-dominated muds and sands to mineral, non-coral-origin muds and sands. The 

presence of artefacts below and throughout this transition suggests coincidental human 

activity during deposition. Indications so far point strongly to humans as a major factor in 

creating the geochemical changes measured. 

 Both the bulk soil analyses and the soil micromorphological studies combine with Dunn 

and Mazzullo's (1993) characterisation of the site before settlement to make clear the extent 

to which the topography and stratigraphic build-up of deposits at Marco Gonzalez are the 

results of human activity. Outside of the ongoing natural processes of post-abandonment 

surface soil accumulation, sub-surface deposits reflect a range of human endeavours from 

domestic activity (refuse and waste accumulation) to resource procurement such as fishing 

and shellfish collecting, inhumations, construction, lime production from shells, and intensive 

processing (probably salt production) and fuel use.  Construction and salt production 

involved the importation to the site of local tidal mudflat sediments, which must have 

affected the shoreline morphology and made a significant contribution to ground-raising of 

the island. Deposits have also been affected by plants and animals attracted to the site by the 

human presence. The large population of hermit crabs (Coenobita sp.), for example, is 

attributable to the availability of thousands of conch shells left behind by the Maya.  

Construction activity and the build-up of land surfaces through conch deposition have also 

improved drainage and increased the surface area and elevation of dry land. The results of the 

bulk soil and micromorphological analyses support the hypothesis that the Marco Gonzalez 

site, and by implication its soils and vegetation, reflect the long-term accumulation of 

deposits generated by human activities. Initial results also add support to the hypothesis that 

local environmental changes are connected to human activities. 

 The presence of maize (Zea mays) and craboo (Byrsonima sp.) in Terminal Preclassic to 

Early Classic deposits suggests strongly that the community at the site was engaged in 

exchange activities.  Neither of these species grows naturally under conditions in which coral 

sand forms the soil parent material, and imported food had to be stored. Both of these factors 

suggest that networks of exchange were regular and wide-ranging.  A regular influx of 

imported goods combines with the extensive fish and shellfish remains to point to the 

potential for significant environmental impact not simply from land alteration as the result of 

processing and discard but also from changes in ecological relationships brought about by 

fauna and flora (imported foods) attendant both directly and indirectly on human occupation.  

Zea mays and Byrsonima sp. are notably frequent in the Terminal Preclassic to Early Classic 
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levels but absent in the later wood-dominated ashy levels, which supports the notion of a shift 

from a focus on domestic or food production to a specialised production activity.  

 

H2: That charcoal found in deposits with sherds from Coconut Walk pottery is spent 

fuel associated with salt production. 

 H2 cannot yet be addressed on present evidence; work on charcoal identification only 

began in November of 2014. In some instances the creation of charcoal is the specific aim of 

an anthropogenic fire; in most instances, however, the creation of charcoal is an entirely 

incidental phenomenon arising from intentional or unintentional fire events. At present there 

is no evidence to suggest that the wood charcoal recovered from Marco Gonzalez derives 

from the purposeful creation of charcoal. The presence of in situ hearth or fireplace features 

indicates that some of the charcoal macro-remains recovered from deposits (although not 

necessarily all) are the by-product of wood used as fuel. The contextual association of 

charcoal and hundreds of Coconut Walk pottery fragments does suggest that there is a link 

between the presence of charcoal and mass production of some kind. It is the presence of 

burnt tidal flat sediments in association with the lime plaster surfaces, ash and charcoal layers 

that points to salt production, although more work, particularly excavation, needs to be 

carried out to explore the strength of this connection. In any case, the association of charcoal 

and ash layers with lime plaster surfaces indicates intensive processing of some kind, and the 

charcoal in these cases is likely to be spent fuel. 

 

H3: That evidence of salt production exists in the form of salt pans, residues, and/or 

peripheral chemical changes in soils or ceramics brought about by high salt 

concentrations.  
 Six of the seven bulk soil samples with the highest salinity levels contain ash, charcoal 

and/or burnt residues and are derived from the processing levels. Because unweathered ash 

deposits and tidal flat sediments, which are present as burnt clasts, inevitably contain soluble 

salts, it seems likely that the variability in salinity recorded across the various samples 

reflects a combination of enrichment through natural processes with anthropogenic activity, 

namely the collection of saline sediments. Thus, in addition to the presence of crude pottery 

believed to be associated with the heating of brine to drive off water to produce salt, there is 

some indication from soil chemistry to support the hypothesis that the processing levels 

reflect salt production. 

 The exact process for salt working at Marco Gonzalez remains obscure, but given the 

findings thus far, sleeching may have been practiced, in which naturally salt-enriched 

sediments were utilised. In various reviews of U.K. and worldwide salt-working methods, 

Biddulph and colleagues (2012, 13-15, 80-82) suggest that ‗sleeching‘ was one method that 

could produce large amounts of burnt intertidal sediment waste, termed ‗redhills‘ in Essex, 

U.K. (Macphail et al., 2012). It is noteworthy that the same U.K. salt-working deposits had 

both enhanced specific conductance and magnetic susceptibility. Using Biddulph and 

colleagues‘ 2012 findings, it seems plausible that at Marco Gonzalez, tidal flat sediments of 

upper salt marsh character, which are the most saline owing to evaporation, were employed 

by mixing the sediments with sea water to produce brine. This mixture, which was discovered 

adhering to some sherds, was heated over small fires lit on or within the now-pink (heated) 

lime plaster features, which are the remnants of hearths or fireplaces. If collection of 

sediments for salt production was a seasonal activity, dry season evapotranspiration and/or 

sediment fermentation (see magnetic susceptibility) would have increased the salt content of 

upper tidal flat sediments. If so, this model may help to explain the layered lime plaster and 

burnt salt-making debris deposits. Some of the tidal flat sediment clasts are ferruginous, 

hence their rubefication and enhanced magnetic susceptibility qualities; experimental studies 
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on newly formed tidal flat sediments at Wallasea Island, Essex, UK, have shown that 

ferruginisation was recorded after only 2 years of exposure, suggesting that at Marco 

Gonzalez such iron staining could have been a very rapid process indeed (Macphail et al., 

2010). Concurrent subaerial exposure under tropical conditions may also have enhanced the 

sediment‘s magnetic susceptibility naturally (see Table 3.1), before any burning took place 

during salt processing. 

 Lastly, it may be possible to estimate a minimum number of salt-processing episodes by 

counting lime plaster floors at Structures 14 and 19, for example, with some levels recording 

6 plaster floor sequences per ca. 30cm. 1.00-2.00 m of salt-working levels does not, however, 

exactly correlate to 20-40 salt-working events, because within these industrial layers are 

occasional trampled occupation floors. 

 Identification of the processing activity may seem at first to be important only from an 

archaeological point of view and not from the perspective of soil-formation processes.  

However, because driving off water from brine requires large amounts of fuel, it is critical to 

make the connection between the processing activity and salt production (or to discover what, 

if not salt, was being produced) in order to develop a good understanding of the nature of fuel 

use, and temperature and firing conditions. We also need to explain the presence of particular 

raw materials such as quartz sand, which seems to be the essential tempering material for the 

standardised ceramics subjected to heating. The presence of quartz in sediments improves 

drainage, and the presence of pyrogenic carbon is instrumental in dark earth formation. 

 

H4: That fuel was obtained on the island. 
 Because the analysis of the charcoal samples has only recently begun, this hypothesis 

cannot yet be addressed. Given the quantities of unexpected exotic materials—e.g., chert 

nodules (rather than finished flakes or preforms) that were imported and flaked on site—we  

are keeping an open mind regarding the sources of the fuel used so intensively in salt 

processing. 

 

H5: That the MG dark earths reflect interaction between residues of human behaviour 

and environmental processes over time. 

 The macro/micro and chemical nature of the soils across the site is locally distinct but 

variable owing to the collective effect of human activities and environmental change. 

Human-derived detritus (conch piles, sherd scatters, combustion products) has become 

incorporated into the active soil horizon. Initial statistical analysis and mapping of element 

values show two main clusters: soil samples located at the periphery of the site with elevated 

Ca and Sr, and interior samples with elevated concentrations of minerogenic elements owing 

to the degradation of imported ceramics (or possibly in some cases, ceramics made with 

imported temper). Within the cluster of interior samples with concentrations of minerogenic 

elements, results show elevated concentrations of trace metals in defined areas of the site and 

in proximal sediments that suggest anthropogenic enhancement. 

 The high LOI values in the surface soils are attributable to high soil organic matter and the 

presence of micro-charcoal. The surface soils are also notably organic-rich for a tropical soil 

in which high rates of organic decomposition would be anticipated. Overall, indicators are 

strong that that the surface soils have been enriched in a way that implicates anthropogenic 

activity.  Macrobotanical remains occur as pyrogenic carbon, but further work is necessary to 

determine whether or not: a) the quantity of microcharcoal is greater than what would be 

expected in areas where forest is simply cleared and burned for farming (milpa); and b) a 

significant proportion of the micro-charcoal can be traced to charcoal in buried deposits as its 

source. 
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H6: That variation in vegetation species types, richness, and diversity will reflect 

anthropogenic influence/impact on local environmental conditions. 

 No specific claims can yet be made to support the hypothesis that detectable variation 

within the site reflects anthropogenic factors. Analysis has begun on species composition in 

relation to elevation, but a detailed contour map is needed—one that excludes the tradition 

(for archaeologists) of schematic representation of structures displayed in Fig. 2.2—to enable 

the plotting of vegetation against elevation. The vegetation is very different from the 

surrounding area, as described above, and anthropogenic factors are strongly implicated, but 

the way in which individual species or vegetation communities might reflect growth 

conditions that result from anthropogenic input remains to be studied. 

 

H7: That principles of interaction will be established with implications for modern 

practices in relation to both resource-efficient management of wastes and future land 

use. 

 At this stage in the research, analyses of the basic datasets are ongoing and no principles 

of interaction have been identified. Direct, causal connections between deposits and impacts 

are not intended, however; instead, we can establish potentials for impact, suggest the relative 

contributions of different occupation phases, and initiate an alternative approach to 

understanding anthropogenic impact. 

 

8.2 Future directions 

 

 One of the next essential steps is to undertake extensive excavations at Marco Gonzalez 

to: 1) provide further information on the nature of the 9th through 12th-century occupations 

(Terminal Classic to Early Postclassic), including their effects on the sealing of the carbon 

deposited in the late 6th through mid-8th centuries (Late Classic); 2) produce extensive 

exposure of the layers of carbon, pottery, and lime plaster surfaces/features associated with 

the Late Classic salt production; and 3) create deeper soundings to gather further information 

on Preclassic and Early Classic activity and its relationship to the environment prior to human 

occupation. To widen our knowledge of the relationship of dark earths and human activity, it 

is important to investigate other dark earth sites along the Belize coast and cayes, particularly 

in areas such as the Stann Creek District, where the soil parent materials are the granites and 

metasedimentary rocks of the Maya Mountains and where carbonate-rich deposits are 

believed to be absent. 

 The vegetation at Marco Gonzalez is now recorded, and the next step to undertake is 

detailed contour mapping in order to determine whether or not there are associations between 

particular communities and subsurface deposits. The mangrove vegetation surrounding the 

site should be examined for indications of former locations of salt pans. Finally, and not least 

important, the invertebrate communities, both insects and crustaceans, warrant study to 

examine the extent to which they contribute to disturbance and perturbation of deposits. 

 Our ultimate goal is to apply the results of our work in two ways. The first is to steer 

modern landfill practices away from the idea of ‗sealing‘ residual waste (and separating out 

organic waste) towards managing the chemistry of discarded material in the context of 

planning for optimal long-term decomposition. The second is to influence the way in which 

agricultural soil viability is conceptualised by those who measure soil fertility.  As matters 

stand, surface soil viability tends to be depicted as synchronic—understandably in the case of 

assessments of fertility for short-term cultivation. Where diachronic processes form the 

context of understanding, soils are described as the product of parent materials or rocks with 

components comprising minerals, organic materials, organisms, water and air, all of which 

have origins in the natural environment; people enter the picture as users—which can 
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sometimes be beneficial—or as degraders (Balée, 1998; Soils, 2015). We argue that deposits 

associated with human occupation (buildings, rubbish, waste, as detailed above) should be 

considered as parent materials or components that have a role in soil formation. Our study is 

taking the initiative not only to identify and measure the products and processes involved but 

also to apply the results in developing a model with the potential to inform environmental 

impact assessments in today‘s world.  
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MARCO GONZALEZ CHRONOLOGY IN CONTEXT 

Period Time Activity 

Modern 1981 – present Independent nation of Belize 

Late British colonial 1964 – 1981 Self-governing Crown Colony 

British colonial 1862 – 1964  Belize becomes a British Crown Colony 

Early British colonial 1660s – 1862  British become firmly established on the mainland; 
Belize known at this time as the Bay of Honduras; 
evidence of British occupation largely from San 
Pedro 

Late Spanish colonial 1648 – 1708  Diminished Spanish activity in Belize after mainland 
Maya rebel; some Spanish pottery from San Pedro. 

Early Spanish colonial 1544 – 1648   Major period of activity in Belize with encomiendas 
established at Lamanai and Tipu on the mainland; 
cache dated to this period from MG Str. 12 

Terminal Postclassic 1492 – 1544  Coastal incursions by European seafarers affected all 
coastally oriented communities but no direct 
evidence from MG. 

Late Postclassic 1350 – 1492 Special-purpose platforms at NW site periphery of 
MG possibly built at this time; random house 
platforms 

Middle Postclassic 1200/1250 – 1350  Mangrove encroachment at MG; inhabitants 
probably move north to San Pedro, which displays 
intensive trade activity at this time and in the Late 
Postclassic 

Early Postclassic 960/1000 – 1200/1250  Additions to standing buildings at MG, possibly those 
with “giant riser stairs,” as well as continued trade 
and exchange 

Terminal Classic 750/800 – 960/1000 Construction of buildings at MG comprising a small 
town engaged in trade and exchange 

Late Classic 600 – 750/800  Among other activities at MG, lime production and 
salt processing 

Early Classic 250 – 600  MG trading in polychrome pottery, chert, obsidian 
and a range of products 

Terminal Preclassic A.D. 1 – 250 Evidence from lowest accessible levels at MG 
indicating dense occupation, households, fishing, 
processing 

Late Preclassic 300 B.C. – A.D. 1 Evidence at MG in the form of sherds from shell 
midden below water level 

Middle Preclassic 600 – 300 B.C No evidence as yet from MG, although pottery of 
this date has been recovered from one of the Colson 
Point sites and Placencia in southern Belize. 
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List of Figures and Figure Captions  

 

Figure 1.1 

Map of northern Belize showing the location of Marco Gonzalez. 

 

Figure 1.2 

Belize coast, barrier reef and atolls. NASA Visible Earth, Yucatan.A2003342.1645. Jacques 

Descloitres, MODIS Rapid Response Team NASA/GSFC, 8 December 2003. 

visibleearth.nasa.gov/view.php?id=69512. 

 

Figure 1.3 

Marco Gonzalez from the air, looking ESE. 

 

Figure 1.4 

Map of Marco Gonzalez showing structure numbers. 

 

Figure 1.5 

Chronology of occupation at Marco Gonzalez in the context of Belize history. 

 

Figure 2.1 

Section drawing, Str. 14, Op 13-1, E face. Width of test pit 1.30m 

 

Figure 2.2 

Section drawing, Str. 19, Op 13-2, W face. Width of test pit 0.90m 

 

Figure 2.3 

Section drawing, Str. 8, Op 13-3, S face. Width of test pit 0.70m. 

 

Figure 3.1  

Str. 14, Op 13-1, E face, showing Monolith samples 1-4. Monolith 1: „dark earth‟ and lime 

plaster floor ghosts; Monoliths 2-3: Late Classic processing levels (probably salt-working) 

including solid pink lime plaster floors; Monolith 4: Early Classic sediments and overlying 

floors, with cached Early Classic vessels below floors. Note that below -0.050 m asl at the 

base of Monolith 4, deposits were too wet to retrieve. Monoliths on the East Face sampled 

Early Classic (Monolith 6) and Late Classic (monoliths 5 and 7) deposits. 

 

Figure 3.2 

Str. 19, Op 13-2, S face, Monoliths 13, 14. Upper Monolith 13: Late Classic processing levels 

(probably salt-working),, top at 1.130m asl; Lower Monolith 13: Early Classic compact ash; 

Monolith 14: Terminal Postclassic sediments as low as 0.058m asl. Above, and out of view, 

are Monoliths 12 („dark earth‟ formed in/of Early Postclassic and Late Classic-Terminal 

Classic levels; top at 1.770m asl) and Monolith 11 (surface soil at 2.070m asl). 

 

Figure 3.3 

Photomicrograph of M4D (MG 383). Compact waterlain ash with fine and very fine charred 

organic matter, and very abundant pale yellow to colourless coprolitic bone and orange-

coloured heated bone. Plane polarised light (PPL), frame width is 4.62mm. 

 

 

Figure
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Figure 3.4 

Photomicrograph of M4C (MG 391) showing 25mm-thick coarse lens containing gravel-size 

plaster, potsherds, shell, bone, including 5mm-size charcoal and bioclastic limestone. 

 

Figure 3.5 

Photomicrograph of M13D (uppermost MG 391, lowermost MG 389). MG 391 is a 

biologically worked and slightly weathered soil formed in ash- and exceptionally bone-rich 

kitchen midden deposits (x13b – 36.5 mg g
-1

 phosphate-P) proposed to date to the transition 

to the Early Classic period. This soil was sealed by very pure ash layers. Size of ash crystals 

suggest a wood fire. PPL, frame height is 4.62mm. 

 

Figure 3.6 

Scan of M4B (MG 382) showing the remains of two lime plaster floors and trampled 

charcoal-rich occupation deposits in between. Lime floors are mainly tempered with isotropic 

siliceous microfossil-rich tidal flat sediments.  Frame width is 50mm. 

 

Figure 3.7 

Photomicrograph of M4B, Op 13-1 (MG 382) detailing plaster layers, with “chaotic” textures 

involving tempering with clasts, which include isotropic siliceous microfossil-rich tidal flat 

sediments of various size ranges. Note pure lime plaster surface layer with horizontal voids in 

this micritic calcite layer. PPL, frame width is 4.62mm. 

 

Figure 3.8 

Lower of the two Early Classic basal-flange bowls (MG 390-1) from Cache 14/6, Op 13-1. 

 

Figure 3.9 

Scan of M3B, Op 13-1. The junction between burned lime plaster floor (uppermost MG 377) 

and overlying burned layer (lowermost MG 374).  MG 374 is composed of mixed coarse 

burned limestone, tidal flat sediments and charcoal, but also contains relict horizontal ash and 

thinly interbedded charcoal layers from small, low temperature in situ fires, conceivably used 

for boiling brine in salt making. The uppermost 15mm of the lime plaster floor is rubefied 

from the effect of fires, suggesting that such floors acted as hearths. Frame width is 50mm. 

 

Figure 3.10 

Photomicrograph of M3B (burned debris layer at the base of MG 374, Op 13-1) showing six 

thin layers of alternating ash and charcoal, recording a series of small fires located on a lime 

plaster floor (see Fig. 15). PPL, frame height is 4.62mm. 

 

Figure 3.11 

Scan of M3A (MG 377, Op 13-1), a typical chaotically mixed ashy, charcoal and burned 

sediment clast layer, with coated ceramic fragment (Coconut Walk pottery associated with 

salt production). Such deposits accumulated rapidly. Frame width is 50mm. 

 

Figure 3.12 

Photomicrograph of M7B (MG 377, Op 13-1). OIL view of probably weakly burned 

calcareous sediment containing fossils. Frame width is 4.62mm. 
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Figure 3.13  

Photomicrograph of M7B (MG 377, Op 13-1). Detail of typical isotropic, siliceous 

microfossil-rich tidal flat sediment clast showing pale colors and minor rubefication from 

being heated. PPL, frame width is 2.38mm. 

 

Figure 3.14 

Photomicrograph of M7B (MG 377). Example of burned (rubefied) laminated tidal flat 

sediment clast found in processing layers; clast is isotropic owing to its high siliceous fossil 

content. The exposed tidal flat sediment was affected by iron staining as exposed detrital 

organic matter, such as seaweed, became oxidised. This can be typical of high salt marsh 

intertidal environments. OIL, frame width is 4.62mm. 

 

Figure 3.15 

Photomicrograph of M7B (MG 377). Another example of burned microfossil-rich tidal flat 

sediment clast. Detail of relict microlaminated, once-humic, fine sediment rich in 

microfossils such as diatoms. PPL, frame width is 0.90mm. 

 

Figure 3.16  

Photomicrograph of M5A (MG 377 within 382). Trampled occupation layer within 

processing levels with heated (rubefied) bone and darkened ash showing weak weathering 

from exposure; layer can be characterized as bone and cess-rich with strong phosphate 

enrichment (18.7 mg g
-1

 phosphate-P). PPL, frame width is 4.62mm. 

 

Figure 3.17 

Photomicrograph of M5A (MG 377 within 382). Fragment of shell sealing fossiliferous coral 

sands. Presence of coral sand suggests that shells of molluscs originally collected for food 

were discarded on nearby beaches and later collected to be reused in construction or lime 

making. This example was found in a trampled occupation floor (see Fig. 22). PPL, frame 

width is 4.62mm. 

 

Figure 4.1 

Map of location of cores and soil samples, Marco Gonzalez. 

 

Figure 4.2 

Cores MG04 and MG01. 

 

Figure 6.1 

Marco Gonzalez, vegetation transects. 

 

Figure 6.2 

Marco Gonzalez, location of 10 X 10m vegetation plots. 

 

Table 3.1 

LOI, carbonate, PH, conductance, phosphate-P and magnetic susceptibility data 

 

Table 3.2 

Details of bulk samples analysed. 

 

Table 3.2 

Summary of soil micromorphology, bulk soils findings, and other information. 



Table 3.1:  LOI, carbonate, pH, conductance, phosphate-P and magnetic susceptibility data  

 
          

 Bulk sample 

 

Thin 

sections 
LOI

a
  

(%) 
Carbonate

b
 

(CaCO3 

equiv, %) 

pH
c 

 

 

Specific 

conductanced 
(S) 

Phosphate- 
Pe 

(mg g
-1

)

f
-8 m3 kg-1) 

max
f

-8 m3 kg-1) 
conv

f
(%) 

          

          

x0-5cm Str8 (Topsoil) 28.1*** 35.1 7.9 455 11.4** 70.3 188 37.4 

x8a M8A-B 12.0** 50.5* 8.6* 1900* 7.25* 87.3 167 52.3 

x8b M8A-B 8.67* 54.8* 8.7* 2220* 6.26* 88.1 157 56.1 

x8c M8C-D 6.24* 59.1* 8.8* 2240* 3.66 127* 145 87.6 

xMRef3 MRef3 4.41 58.8* 9.1* 1090* 2.32 212* 225 94.2 

x9a M9A 5.41* 57.9* 8.9* 2620** 4.50 139* 158 88.0 

x9b M9B-C 5.36* 59.3* 8.7* 2880** 2.42 209* 209 100 

x9c M9B-C 5.34* 60.9* 8.6* 4080** 1.88 206* 191 >100 

xMRef2 MRef2 2.02 75.0** 9.0* 2340* 1.15 59.4 57.3 >100 

x10a M10A-B 5.24* 57.6* nd nd 1.82 203* 197 >100 

x10b M10A-B 3.28 61.7* nd nd 1.92 164* 155 >100 

x1a M1A 7.22* 52.1* 8.9* 697 5.42* 197* 214 92.1 

x1b M1C 6.51* 43.4 8.8* 1420* 2.00
†
 444* 440 >100 

x2a M2A-B 2.61 60.1* nd nd 3.12
†
 77.8 92.3 84.3 

x2b M2A-B 12.6** 47.7 8.7* 2500** 2.00
†
 144* 166 86.7 

x2c M2C-D 8.12* 44.0 8.7* 2930** 3.65
†
 362* 348 >100 

x2d M2C-D 18.4** 45.4 nd nd 1.62 105* 144 72.9 

x3a M3A-B 19.9** 49.7 8.5* 5260*** 1.09 163* 244 66.8 

x3b M3A-B 5.89* 33.5 8.7* 5220*** 2.10
†
 641* 714 89.8 

x3c M3C-D 14.4** 56.0* 8.6* 5700*** 1.19
†
 110* 198 55.6 

x3d M3C-D 7.28* 53.0* 8.8* 4900** 6.67* 257* 303 84.8 

x3e M3C-D 3.72 63.8* 8.8* 3340** 1.37 96.4 189 51.0 

x3f M3C-D 6.99* 48.6 8.8* 5070*** 5.66* 374* 402 93.0 

x5a M5A-B 5.39* 48.9 8.9* 5010*** 5.52* 286* 323 88.5 

x5b M5A-B 5.84* 54.9* 8.9* 3980** 18.7** 85.4 159 53.7 

Formatted Table

Comment [A1]:  In my original report, I 

included (as Table 1) details of each of the 

samples analysed. Without this, these are 

just ‘random numbers’ and the  reader has 

no idea how the table is organised, where ...

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt, Not Bold

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Table



          

 Bulk sample 

 

Thin 

sections 
LOI

a
  

(%) 
Carbonate

b
 

(CaCO3 

equiv, %) 

pH
c 

 

 

Specific 

conductance
d 

(S) 

Phosphate- 
Pe 

(mg g
-1

)

f


-8
 m

3
 kg

-1
) 

max
f


-8

 m
3
 kg

-1
) 

conv
f

(%) 

          

x5c M5A-B 9.21* 55.1* nd nd 5.43*
†
 158* 205 77.1 

x6a M6 4.65 65.8* nd nd 21.2*** 4.8     

x0-5cmStr19 (Topsoil) 26.9*** 39.4 8.0 477 8.09* 120* 194 61.9 

x12a M12A-B 5.42* 58.3* 8.4 184 3.91 86.2 137 62.9 

x12b M12A-B 8.65* 50.0* nd nd 3.26
†
 132* 175 75.4 

x13a M13A-B 5.87* 48.0 8.5* 5020*** 7.03* 388* 451 86.0 

x13b M13C-D 2.70 59.4* 8.8* 3620** 36.5*** 17.8 16.3 >100 

x13c M13C-D 4.02 58.8* 8.7* 3560** 25.3*** 76.3 99.4 76.8 

x14a M14A-B 3.85 56.6* nd nd 26.9*** 62.4 81.3 76.8 

x14b M14A-B 3.91 63.4* 8.8* 3680** 22.4*** 16.5 21.0 78.6 

x14c M14C-D 3.30 67.1* 8.8* 3040** 24.5*** 16.1 26.8 60.1 

x14d M4C-D 3.36 65.0* 8.8* 3480** 28.1*** 13.1 20.4 64.2 

x4a M4A-B 5.51* 60.5* 8.7* 5580*** 22.5*** 121* 111 >100 

x4b M4C-D 3.66 70.2* 8.9* 3540** 23.2*** 8.6 14.8 58.1 
          

 
a
 LOI: values highlighted indicate notably higher LOI values, which reflects the amount of organic matter and/or charcoal present: * = 5.00–

9.99%, ** = 10.0–19.9%, *** ≥ 20. 0%. 
b  

Carbonate: values highlighted indicate higher carbonate concentrations: * = 50.0–74.9%, ** ≥ 75.0%.  
c 

pH: values highlighted indicate pH ≥ 8.5; nd = not determined because of insufficient sample.  
d  

Specific conductance: values highlighted indicate higher values: * = 1000–2440 S, ** = 2500–4990 S, *** ≥ 5000 S; nd = not determined 

because of insufficient sample.    
e 

Phosphate-P: 
†
 indicates that phosphate-P was determined on residual samples from the LOI analysis (see footnote of Table 3Crowther 

2014); values highlighted indicate likely phosphate-P enrichment: * = ‘enriched’ (5.00–9.99 mg g
-1), ** = ‘strongly enriched’ (10.0–19.9 mg 

g
-1), *** = ‘very strongly enriched’ (20.0–39.9 mg g

-1).   
f  

Magnetic susceptibility: data are difficult to interpret (see text);  values ≥ 100 x 
-8

 m
3
 kg

-1 are highlighted 
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Table 3.3 Summary of soil micromorphology and bulk soil findings and other information 

Period/Contexts Soil micromorphology and bulk soil data interpretations  Other findings 

Surface soil 

Structures 8 and 

19 

 

 

Dark earth 

Structures 8, 14 

and 19 

Most organic (highest LOI), and least alkaline layer, with biologically 

mixed humic mineral soil and litter (L) layer of typical Mull humus 

horizon. Relatively high phosphate levels may result from relict bone and 

possible effects of decomposition of inhumations (also likely influencing 

character of dark earth). 

Typified by total biological microfabric of very fine charcoal-rich soil – 

hence dark colour – containing relict clasts of resistant burned sediment, 

ash nodules and calcined bone, for example, while lime plaster floors and 

fragments show dissolution and sometimes recrystalisation of calcite 

(micrite), and can occur as ‘ghost’ layers. Leaching has caused marked 

reduction specific conductance (salinity).  

Deposits above salt-working layers 

cannot be clarified by small 

excavation units owing to extent of 

perturbation by either Terminal 

Classic burial activity or land crab 

burrowing, as well as modern 

removal of dark earth. Extensive 

excavation of Str. 14 revealed that 

the floors here are associated with 

Terminal Classic and Early 

Postclassic structures. 

Late Classic 

Str. 14 - MG 

359-377  

 

Str. 19 - MG 386 

Salt working deposits formed of mainly layered: 

a) little disturbed and sometimes totally in situ ashy combustion zones,  

b) in situ lime plaster floors,  

c) chaotically mixed burned marine sediment clast layers (with high 

specific conductance and magnetic susceptibility), with various proportions 

of ash and coarse charcoal present, and  

d) occasional trampled occupation surfaces showing minor weathering 

features and bone-rich kitchen midden waste; presence of shells which had 

‘trapped’ fossiliferous beach sands.   

Findings suggest use of tidal flat sediments (probably ‘upper salt marsh’ 

environment) for source of concentrated salt, which when mixed with sea 

water produce a strong brine; this was heated on small low temperature 

fires located on lime plaster floors which acted as the hearth base. Mainly 

siliceous fossil-rich fine tidal flat sediment was employed – as also found 

coating sand-tempered Coconut Walk pot fragments. Some mollusc shells, 

once processed for food, and which were discarded on the beach, were 

sometimes recycled for constructions or lime burning.  

Very little datable pottery is present 

aside from the Coconut Walk vessels 

used in salt production.  Clearly 

represents a change in focus of 

activity from earlier times. 

Table



Early Classic 

Str. 14 - MG 382 

 

 

 

Str. 19 - MG 

389-386 

Construction of a series of lime plaster floors (for example over a cached 

Early Classic bowl), tempered with isotropic siliceous microfossil rich tidal 

flat sediment clasts of various sizes (silt to gravel size), and incorporating 

charcoal and fine burned bone, with pure micritic lime plastered surfaces, 

conceivably of ash(?) origin.  

Upwards, 391 is sealed by a series of ash layers (389-386) – some ‘wetted’ 

and recemented – with an interbedded series of thin trampled deposits, 

which can be extremely rich in heated/burned bone (mainly fish bone) and 

for example record the highest phosphate content at Marco-Gonzalez. In 

this ‘domestic’ occupation area, these are presumed fireplaces used for 

food preparation which may have included low temperature 

cooking/smoking of fish.   

Indications of substantial Early 

Classic construction (at least one 

metre-high platform); also faunal 

remains, ceramics, a range of foreign 

stone.  

 

Preliminary archaeobotanical results 

suggest increase in proportion of 

woody to non-woody remains 

compared to earlier levels. 

Terminal 

Preclassic  

Str. 14 – MG 

383 

 

Str. 19 – MG 

391 (389?)  

Rainstorm erosion of putative ash-rich hearths, with associated burned bone 

(cooking), heated bone (low temperature cooking - food processing – 

smoking?) and human waste (coprolitic bone), all including fish bone, 

producing waterlain ashy sediments in low ground. High energy 

colluviation resulted in coarse lens composed of gravel-size lime plaster, 

pot, bone, bioclastic limestone and charcoal.  

Exposure and short period of stasis led to weak weathering effects and 

biological working of the uppermost sediments at both locations. At 

Structure 19 these were composed of shell- and bone-rich kitchen midden 

deposits at the top of Context 391.  

Coring data suggest such ‘early’ ash-

rich sediments were widespread (see 

Section 4), which implies high 

occupation concentrations. 

 

Ceramics and skeletal material, both 

human and faunal remains, are all 

well preserved but fragmented. 

 

Zea mays, Byrsonima sp. are present. 

 

 


