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Assessing the potential of phytolith analysis to investigate local 
environment and prehistoric plant resource use in temperate regions: a 
case study from Williamson’s Moss, Cumbria, Great Britain 
 

The archaeological site of Williamson’s Moss, located in north-west England, was excavated in 

the 1980s as part of an investigation of the Mesolithic, Neolithic, and Bronze Age populations 

living around the estuary of the River Esk in Cumbria. Recovery of plant remains was generally 

low, but bulk sediment samples were collected from different contexts as part of a project 

archive for future analysis. This paper presents the results of new analyses conducted on these 

archived samples, carried out to assess whether phytolith analysis could offer additional 

insights into the local environment and plant use at the site. Whilst the results indicate the 

presence of a diverse range of phytolith types from both monocotyledon and dicotyledon plants 

(along with sponge spicules, diatoms and microcharcoal), interpretation of the data is 

problematic. Comparison with existing palynological and excavation data indicate 

methodological limitations in using bulk archived samples. Nevertheless, the recovery of 

abundant microfossil material is encouraging for the emerging field of phytolith studies in 

temperate environments such as Britain, and suggestions are made regarding future sampling 

strategies and taphonomic considerations that will reduce problems for future analyses.  

Keywords: phytolith analyses, pollen analysis, multivariate investigation, prehistoric 

archaeology, methods, Britain 

 

Introduction 

In Britain, understanding of plant use in early prehistory is hindered primarily by two factors: 

a relatively limited number of sites where conditions favour preservation of plant materials, 

and the nature of plant use which may preclude the types of traces that would be expected in 

the archaeological record (Zvelebil 1994). Wet sites like Star Carr (Clark 1954; Mellars and 

Dark 1998) and Williamson’s Moss (Bonsall et al. 1989) where conditions have favoured the 

preservation of organic archaeological remains and associated palaeoenvironmental evidence 

are relatively rare in Britain. 
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 Archaeobotanical studies are often limited by taphonomic processes and preservation 

conditions as plants generally have to be burnt, waterlogged, or desiccated to preserve. 

Interpretations are therefore often skewed towards the recovery of plant remains used for fuel 

(Boardman and Jones 1990; Matthews 2010) and food remains from burnt grain storage 

contexts (Van der Veen 2007, 979). Pollen analysis from offsite sediment sequences can be 

an indicator of human plant use against a backdrop of the natural landscape composition, but 

whilst pollen records for prehistoric Britain are extensive, direct links between vegetation 

change and anthropogenic activity remain unclear (Bishop et al. 2015) and pollen records are 

often limited in the precision with which they provide local ecological information (Simmons 

and Innes 1987, 395). 

 

The use of durable plant microfossils is becoming increasingly common in archaeology to 

overcome some of these problems and to provide additional insights regarding ancient plant 

use, and the analysis of plant phytoliths is now well established in many parts of the world, 

though not without debate (see Shillito 2013). Phytoliths are bodies of biogenic silica that has 

hardened into place following deposition of monosilicic acid within and between the cells of 

plants. Monocotyledon (monocot) plants, and grasses in particular, tend to produce larger 

quantities of phytoliths per gram of plant material than dicotyledon (dicot) plants (Albert and 

Weiner 2001). Dicots produce both lower absolute quantities of phytoliths but also more 

amorphous types, which are difficult to assign to a particular genus or species, though the 

relative proportions or ratios of specific morphologies can be useful in determining broad 

categories of plant use and palaeoenvironmental reconstruction (Piperno 2006, 119-125; 

Strömberg et al. 2018, 264). The inorganic nature of phytoliths enables them to preserve 

under a wide range of conditions, including high temperatures and acidic soils (Pearsall 2014, 
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55; 2015, 274) meaning these microremains are useful where other plant remains are poorly 

preserved (Piperno 2006, 7).  

 

Phytolith analysis is particularly well suited to semi-arid environments, as their formation 

within the plant is linked to water availability and evapotranspiration (Jenkins et al. 2016; 

Madella et al. 2009; Mithen et al. 2008; Rosen and Weiner 1994). In these environments, 

large ‘conjoined’ phytoliths from entire sections of plant tissue can form, making it possible 

to distinguish between different types of closely related plants, such as domesticated cereals, 

on the basis of the tissue morphology (Rosen 1993). In regions with lower rates of 

evapotranspiration, less water availability, and where plants grow on substrates with less 

silica availability, as well as when plants are not prolific phytolith producers, the formation 

and recovery of phytoliths may be limited or even non-existent (Piperno 2006).  

 

A small number of British studies have recovered phytoliths from sediment samples (Elliott 

2018; McQuilkin 2014; Murphy 1986; Powers et al. 1989; Robinson and Straker 1991) and 

from residues on artefacts and skeletal remains (Armitage 1975; Hart 2011; Maslin 2015; 

Milner and Gwynne 1974; Radini et al. 2016). Powers et al. (1989) examined phytolith 

assemblages from coastal sand dune environments in the Outer Hebrides and identified that 

phytolith assemblages associated with human occupation were orders of magnitude greater 

than those that occur naturally. Madella (2007) successfully identified phytoliths from the 

community of Braehead, Scotland, and investigation of deposits at Coppergate and 22 

Piccadilly (ABC Cinema) in York has yielded promising results (McParland 2016). These 

studies have been small scale and important but limited by the lack of an established 

reference collection of phytoliths from native plant types in Britain. 
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Despite these problems, there is still significant potential for phytolith studies in Britain; in 

continental northern Europe, where the environment is similar to that of Britain, phytoliths 

have been analysed extensively (predominantly from medieval contexts) alongside soil 

micromorphological studies to try to understand the origin and depositional history of 

phytoliths in urban ‘dark earths’, where they are thought to represent the local environment 

and a range of human activities including fuel use and agricultural practices (Devos et al. 

2009, 2013; Macphail et al. 2004; Simpson et al. 1998; Vrydaghs et al. 2015). The success of 

such studies indicates that this is an avenue worth pursuing in other contexts, albeit with 

careful consideration of taphonomy, as part of a multi-proxy approach. While 

interdisciplinary studies can better inform complex assemblages of archaeological and 

paleoenvironmental data (Macphail 1981; Ryan and Blackford 2010; Wouters et al. 2019), 

the application of such an approach is, unfortunately, not routine practice at most 

archaeological sites. By integrating phytolith data with archaeologically recovered material 

culture, pollen analyses, and radiocarbon dating, we elaborate our understanding of 

Williamson’s Moss, as well as demonstrate the utility of phytolith analyses for the study of 

prehistoric British sites. 

 

As noted by Hart (2016), archaeological phytolith analysis has recently entered a new phase 

of ‘expanding applications’ with the number of studies utilising phytoliths having increased 

considerably in the past decade. As phytolith analysis becomes better known and utilised 

within the wider discipline, the possibility of the application of such analyses retrospectively 

to earlier excavations is raised. In Britain and elsewhere, bulk soil samples may be retained 

especially for such purposes and, as demonstrated by McParland’s (2016) work, archived 
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assemblages can contain important and preserved contexts for phytolith, diatom, soil 

geochemistry, and pollen analyses. Understanding how best to utilise such samples is 

therefore of significant interest, particularly for periods such as the Mesolithic where other 

types of plant remains are limited and the nature of human use of plants is thus poorly 

understood. 

 

The aims of the analyses are to assess whether it would be possible to recover phytoliths in 

meaningful quantities from archived bulk soil samples and, if so, whether the phytolith 

assemblages could provide additional insights into Mesolithic plant use and environment at 

Williamson’s Moss, and thus assess the potential for this type of analysis at other early 

prehistoric sites in similar environments.  

 

The Williamson’s Moss archaeological site 

 
Williamson’s Moss is one of a series of coastal Mesolithic sites near the estuary of the River 

Esk in Cumbria, northwest England, first recognized as lithic scatters during surveys of 

ploughed fields. The Williamson’s Moss site was chosen for excavation owing to its 

proximity to a large peat-filled basin with palaeoenvironmental potential and because a 

substantial part of the site had escaped damage from ploughing. The site lies immediately 

behind a raised shingle beach (formed when the mid-Holocene marine transgression reached 

its maximum) where a low-relief ridge is flanked by Late Pleistocene palaeochannels. The 

palaeochannels had ceased to be active stream courses and were partly filled with sediment 

prior to the Mesolithic occupation which extended onto the channel surfaces. Elevated 

moisture levels in the palaeochannel infill sediments resulted in good preservation of organic 
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remains, primarily archaeological wood and bark. Following a test-pit survey in 1978, 

excavations were undertaken from 1981–1986 aimed at understanding the nature, chronology 

and environmental impact of the Mesolithic occupation. Settlement evidence proved not to be 

confined to the Mesolithic; sporadic traces of Neolithic and Bronze Age activity were also 

uncovered (Bonsall et al. 1989, 1994; Bonsall 2007). 

 
 
Fig. 1  
 

Archaeological features in excavation Areas E1 and E2, including raised platforms, were 

identified beneath fine-textured slope wash deposits that accumulated during the Holocene 

(Bonsall et al. 1989, 187–194). Structure 1 (Area E1) consisted of a raft-type foundation of 

oak branches overlain by a black well-humified peat of average thickness c. 20 cm containing 

abundant birch bark fragments (Figure 2). The peat layer was interpreted as the decayed 

remnants of an original brushwood cover laid over a timber lattice to create an artificial 

raised platform over marshy ground (Bonsall et al. 1989). Radiometric 14C dates on birch 

bark fragments from the peat indicate an age of c. 4400 cal BC (Bonsall et al. 1989) for the 

structure, which falls close to the end of the Mesolithic or, conceivably, around the time of 

the Mesolithic/Neolithic transition.  

 

Fig. 2  

 

 

In Area E2, Structure 3 was a timber lattice (resembling Structure 1 in Area E1) which may 

have been connected to the higher ground at the edge of the palaeochannel by Structure 4, a 

raised linear feature of redeposited earth and stones. Structures 3 and 4 are undated but they 
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are older than (i.e. stratigraphically below) Structure 5 – a hearth feature overlying a thin 

layer of birch bark supported by foundation timbers – which is dated to the Bronze Age by a 

radiometric 14C measurement of c. 1800 cal BC (Bonsall et al. 1989, 194). 

 

The timber structures at Williamson’s Moss and associated evidence of woodworking – in the 

form of radial splitting of oak trunks and whittling marks on branches (Bonsall et al. 1989) – 

find parallels in Mesolithic contexts elsewhere in northern England, at Star Carr (Conneller et 

al. 2012) and Bamburgh Kaims (Young et al. 2015). 

 
Samples for palynological analysis were collected from the soil profile of Area E1 by Bonsall 

using overlapping Kubiena tins and kept in cold storage until analysed. A vertical series of 23 

subsamples was extracted from the Kubiena tins, the resulting pollen profile spanning from c. 

32-115 cm below the modern land surface and passing through the peat (‘decayed 

brushwood’) of Structure 1. The 14C dates for the ‘brushwood’ of Structure 1 were used to 

‘anchor’ the pollen sequence. The results of the pollen analysis were interpreted to indicate 

that the palaeochannel had been largely surrounded by trees and shrubs preferring carr 

wetland environments during the Mesolithic occupation (Tipping 1994), although this 

interpretation was contested by Bonsall et al. (1994) citing archaeological and pedological 

evidence for an extensive clearing on the northeast side of the palaeochannel during the 

Mesolithic. 
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Materials and Methods 

Sampling strategy 
 
In 1982, bulk soil samples (6-12 litres in volume) from successive excavation spits in 50 x 50 

cm excavation quadrats associated with the various structures in Areas E1 and E2 were 

retained for post-excavation analysis. These were double bagged in 500-gauge (125-micron 

thick) polythene, and stored in cool, dark conditions. In 2015 bulk samples from Structures 1 

and 5 were subsampled for phytolith analysis; no signs of drying out or fungal attack were 

observed. Though targeted sampling, also referred to as point sampling, during excavation is 

ideal for higher resolution interpretation, the approach adopted here makes use of previously 

underutilized, archived material, and as such is closer to the technique of ‘pinch/composite 

sampling’ (Pearsall 2015, 76).  

 

In total, 12 subsamples were taken from the bulk soil samples in storage, six from Area E1 

(within and adjacent to Structure 1, itself) and six from Area E2 (within and adjacent to 

Structure 5). Details of the subsamples are provided in Table 1 and Figures 3 and 4. The 

samples from Structure 1 were targeted initially as they corresponded to the earliest dated 

human activity in the palaeochannel and thus might provide information on Mesolithic plant 

use. These samples originated from Area E1 and were spatially constrained within a single 50 

x 50 cm excavation quadrat. The Structure 5 samples were selected for comparative purposes. 

They came from three different grid squares, located successively further away from the 

structure. 

Table 1 
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Area E1 samples within the EY 55 D quadrat were associated with the ‘brushwood cover’ of 

Structure 1 (Figure 3) and correspond to each of the four excavation levels (spits 16–19, 

between c. 0.75–0.95 m depth). Two sets of samples were analysed from spits 17 and 18 and 

this repetition of analyses provided useful information on inter-sample variability. 

 
Fig. 3 
 

Area E2 samples cover three excavation quadrats (EF 55A, EF 53A, EF 51A) spanning a 

horizontal distance of 4 m, and a depth range of approximately 25 cm. They were associated 

with Structure 5 and located near the hearth. One set of two samples originates from “like” 

contexts in spit 2 and offers additional comparison for inter-sample variability (Figure 4). 

Fig. 4  
 
Samples were subsampled and processed following protocols outlined by Shillito (2011, 27-

29).  In brief, processing included carbonate removal using HCl, removal of the clay fraction 

using density settlement, removal of organic matter in a muffle furnace, and separation of the 

phytoliths from non-biogenic mineral material using a process of centrifugation in a heavy 

density liquid. The recovered material was dried and weighed. Approximately 3 mg of extract 

was mounted in Entellan on a glass slide and examined using a Leica DM300 microscope 

under plane- and cross-polarized light at magnifications of x200 and x400. Microphotographs 

of phytoliths were captured using an integral digital camera. 

Phytolith counting and identification 

To ensure a representative sample, between 200 and 300 single phytoliths or 50 to 100 

multicellular phytoliths were counted for each sample. According to Albert and Weiner 

(2001), error margin is reduced from 23% when counting 194 phytoliths to 12% by counting 

265 phytoliths. The number of phytoliths per slide was calculated following Shillito (2011). 
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Phytoliths were identified by shape, surface texture/decoration and ornamentation, as 

outlined in the ICPN (Madella et al. 2005) and with reference to published standard literature 

(PhytCore Online Database; Piperno 2006; Rapp and Mulholland 1992; Twiss et al. 1969). 

On average, 300 phytoliths were counted within four transects of a slide; however, due to 

phytolith degradation in some samples, counting additional transects was necessary to reach a 

representative number of phytoliths.  

 

Phytolith morphologies were grouped into broad categories that were then attributed to 

monocot or dicot plants and plant parts. Morphotypes were grouped into long cells (monocots 

primarily), short cells (monocots, and grasses specifically), platelets/aggregates (dicots), and 

miscellaneous/unidentifiable, based upon phytolith interpretations from sites with similar 

ecosystems (primarily Bobrov 2007; Madella 2007). Tracheids, mesophyll, and polyhedral 

phytoliths have widespread and repetitive production in many plants (Piperno 2006, 42-43) 

and so were not used for identifications in this assemblage and were categorized as 

miscellaneous. Other microfossils observed during microscopic examination included 

microcharcoal, diatoms and sponge spicules. These were counted but not identified beyond 

general type categories.  

Statistical analysis 

Statistical measurements were performed in Stata 12.1, employing the Fisher’s Exact Test to 

analyse whether there were differences in phytolith category compositions among four 

morphological groups (Long cells, Short Cells, Miscellaneous, and Platelets/Aggregates 

between like-paired samples from Area E1 and Area E2 (Table 2). Like-paired samples are 

those sub-sampled from bulk samples taken from the same excavation quadrant, unit, and 
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spit. Comparisons of inter- and intra-site patterns of data are valuable interpretative methods 

(Piperno 2006, 114) but as control samples were unavailable, comparisons were drawn 

between samples within the Williamson’s Moss site to assess variance among samples and 

verify intra-site spatial variation. 

Results  

Phytolith concentrations 

The majority of samples from the Williamson’s Moss palaeochannel have similar 

concentrations of phytoliths, ranging from 20,000–30,000 per gram of sediment (Figure 5). 

Notable exceptions include Samples 1 and 6, both from Area E1, which contained 

significantly higher and lower concentrations at 117,489 and 734 phytoliths per gram of 

sediment, respectively (Figure 5). Area E1 exhibits a greater dispersion of values away from 

the mean (standard deviation of 39,753 compared to Area E2 5,224), due to the two outlier 

values – Sample 1 containing the highest concentration of phytoliths and Sample 6 the lowest 

concentration. 

 

The overall concentrations recovered from Williamson’s Moss are considered relatively high 

compared to the phytolith values recovered from the coastal dune environments in the 

Hebrides (Powers et al. 1989). Powers et al. (1989, 35) described phytolith concentrations 

from both modern and archaeological samples, with those from archaeological middens and 

cultivated contexts ranging between 3,000 and 938,000 phytoliths per gram of sediment.  

 

Fig. 5 
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Spatial variation in morphotypes 
 
Raw counts of phytolith morphologies, along with their respective groups, categories and 

interpretations, can be seen in Table 3 and 4. Overall, the most frequent phytolith 

morphologies identified in the assemblage include psilate long cells and trichomes, which 

most likely indicate grasses, reeds, or sedges (see Tables 3 and 4). Square short cells and 

rugulated, irregular, multicellular aggregates are also common in the assemblage, and 

interpreted as dicot material. Multicellular aggregates were exclusively dicot material and 

counted as one articulated tissue, following the guidelines noted above (Albert and Weiner 

2001, Shillito 2011). Jenkins et al. (2011, 390) recommend relative data as the most 

appropriate method of analysis when there is an uncertainty of sedimentation accumulation 

rate, and thus relative counts of identified phytolith morphotypes are presented here (Figures 

6, 7, and 8). 

 

Area E1 samples averaged 61% monocot to 39% dicot material (Figures 6 and 8) and 

although monocots dominate the assemblage, it has a surprisingly high percentage of dicot 

material. Like-paired samples (Samples 2 and 3, and 4 and 5) are quite distinct in 

composition, both when viewed in relative percentages (Figure 8) and when compared using 

Fisher’s Exact Test (p<0.001; see Table 2). This test confirms that there are significant 

differences in composition observed between like-paired samples, which are highly unlikely 

to be due to random sampling. 

 

Area E2 averages 67% monocot derived phytoliths, with one sample containing a higher 

proportion of dicot material (Sample 8, 56% dicot). Like-paired samples in Area E2, Samples 
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9 and 10, are also statistically distinct from one another (p<0.001 by Fisher’s Exact Test; see 

Table 2). 

 
Fig. 6 

 

 
Fig. 7 

 

Fig. 8  

 

Discussion 
 
Phytoliths tend to remain in the site of deposition (Piperno 2006, 21) and we understand this 

assemblage as local in origin; from the anthropogenic deposition of birch brushwood, the 

natural vegetation in the vicinity of Areas E1 and E2, and/or flooding events bringing in 

sediment from the surrounding landscape. While phytolith analyses have been shown to be 

effective in identifying human activity (Cabanes et al. 2011) or specific archaeological 

features such as hearths (Piperno 2006, 83), it is debatable whether this is the case with more 

ephemeral occupation surfaces, especially when the depositional environment of those 

contexts is not well understood (Shillito 2017; Strömberg et al. 2018, 248). The sampling 

locales in this analysis were identified as anthropogenic during excavations (Bonsall et al. 

1989; Tipping 1994) but despite the sealed nature of Areas E1 and E2 identified during 

excavation, the phytoliths from these sediments cannot be definitively interpreted as 

anthropogenic in origin. The lack of high-resolution stratigraphic and spatial information, and 

a thorough understanding of the depositional and taphonomic activities in the areas of 

interest, permit only general interpretations of the phytolith and pollen assemblages. 
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Monocot plants dominate the phytolith assemblage and indicate vegetation including grasses, 

reeds, and sedges. Considering dicots’ notoriously low phytolith production rate in 

comparison to grasses (Albert and Weiner 2001, 259), a fair proportion of the Williamson’s 

Moss assemblage does consist of dicot material. The phytolith assemblages of both Areas E1 

and E2 are comprised by at least 35% dicot types, with both Samples 2 and 7 containing a 

majority of dicot phytolith morphotypes. During excavation of Structure 1, the peat was 

observed to be “composed of twigs, thin branches, and bark” and was interpreted as the 

decayed remains of birch brushwood (Bonsall 1989, 190), which could explain the contexts’ 

high dicot compositions. The lowermost sample in Structure 1 (Sample 6), exhibits very low 

dicot numbers, despite the associated feature being composed of wood and birchbark. This 

sample, however, had the lowest phytolith concentrations of all the samples analysed (Figure 

6) and may more accurately be reflecting a degraded sample that was subject to silica 

recycling following abandonment of Structure 1. Overall, the phytoliths associated with 

Structure 1 generally indicate more varied kinds of plants and plant parts than those found in 

Area E2 (Figures 7 and 8), including a higher quantity of dicot (wood and bark) material. 

 

The presence of microscopic charcoal, which was indeed identified in Williamson’s Moss 

samples, would support the possibility of local anthropogenic burning, but again, it is 

impossible to say with certainty without further contextual information provided, for 

example, by micromorphological analysis. Other evidence of burning, such as melted 

phytoliths, were not noted during identification. In addition to water, wind is one of the most 

pervasive movers of phytoliths (Wallis 2001) and could have contributed microcharcoal and 

phytoliths from localised burning events or fire located some distance from the 

palaeochannel. When concentrations of microcharcoal and dicot material are examined (of all 
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the microparticles counted) there does not seem to be a correlation between the two (Figure 

9). Pollen analysis raised the possibility of surface run-off and wind moving microremains 

into the palaeochannel (Bonsall et al. 1989), and we strongly suspect that water run-off from 

the higher ground surrounding the Williamson’s Moss site, may have contributed to the 

phytolith assemblage over time. This does not mean the deposits are homogenous or that 

there was no vertical displacement of microremains, but that the remains may in part reflect 

the vegetation growing around the channel during the use and subsequent abandonment and 

decay of Structure 1 (Bonsall et al. 1989, 198).  

 

Fig. 9  
 

The pollen samples analysed from the Williamson’s Moss site reflect the local environment 

rather than the anthropogenic constructions of Area E1 (Bonsall et al. 1989, 198). As 

expressed by Tipping (1994), it is difficult to extrapolate the activities suggested through 

pollen to features or areas that are not directly dated. The phytolith assemblage, which 

contains a substantial amount of dicot material, associated with diatoms and sponge spicules, 

could be seen as supporting an “expansion of wetland tree taxa” around the palaeochannel 

(Tipping 1994, 126); alternatively, it might reflect the in situ decomposition of 

anthropogenically deposited brushwood and colonization by vegetation, combined with 

surface runoff from the surrounding landscape. 

 

Overall, the phytolith assemblage from the peat (‘brushwood’) of Structure 1 in Area E1 

displays a decreasing amount of monocot and an increasing frequency of dicot material from 

bottom to top of the deposit (Figure 6). This general trend suggests a transitioning 

environment with increasing numbers of trees.  
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Sample 7 from Structure 5 came from near a hearth feature, and has a higher proportion of 

dicots, possibly related to fuel use. Sample 10 has a relatively high proportion of cuneiform 

bulliforms (4%) compared to other Area E2 samples (1‒2%), a morphology that has been 

associated with wetland environments/plants (Bobrov 2007, 157; Golveya 2007, 199; 

Ramsay 2016), and could be representing Phragmites australis or Danthonia decumbens 

(McParland 2016). Cuneiform bulliform phytoliths can also originate from wild grasses 

(Madella 2007, 108), but nonetheless suggest an environment with riparian monocot plants. 

The high proportion of sponge spicules and diatoms, together with a low presence of 

microcharcoal (“Other Microremains” in Figure 7) throughout E2 supports a wetter 

environment, with fewer burning events, than seen in the much older samples of Area E1. 

Overall, the wetland plants indicated by phytolith analysis correspond with previous 

archaeological interpretations of the brushwood platform as an anthropogenic means to 

manage wetland, marshy environments. 

 

The usefulness of bulk, archived samples from previously excavated sites 

Whilst there is some support for the utility of phytolith analysis in providing localised 

environmental information, complementing that afforded by pollen data, possibly the most 

important results of this work are the methodological insights regarding the usefulness of 

archived samples (and bulk samples more generally) for phytolith analysis. Statistical 

analyses revealed significant differences between the morphological compositions of each of 

the three like-paired samples. Given this variability in composition, it is clear that there are 

significant differences between the assemblages, but it is not possible to determine whether 

these are due to spatial differences in plant deposition or to spatially distinct post-depositional 
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taphonomic and diagenetic conditions. Given that phytoliths are thought to represent “highly 

localised, if not in situ decay” (Piperno 2006, 83), it is not surprising that spatial variations 

are so marked. The spatial variation is significant but impossible to interpret without a better 

understanding of the micro-context from which these samples were excavated (Shillito 2011). 

 

While excavators may assume that arbitrary levels of 5 centimetres will represent discrete 

contexts, the degree to which phytolith deposition is specific to a particular time and place 

renders this sampling approach a broad, undifferentiated sampling technique. It is evident 

that sampling techniques that cater to specific, isolated phytolith contexts and that are 

designed to address specific research questions are imperative for confident spatial 

interpretations of plant deposition, making bulk samples of limited use for phytolith analysis 

at sites where plant use was variable across space and time, beyond offering general 

presence/absence of broad categories of plant types. 

 

Recent analysis of burnt mound deposits in Great Britain demonstrates the advantages of 

combining phytolith analysis simultaneously with sediment micromorphology (Gardner 

2018), a combination of methods that also enables detection of whether plant microremains 

may have moved through sediment due to water action or other forces. Such a sampling 

strategy must be designed specifically for analysis at the microscale. 

 

While it is impossible to make recommendations that would cover all the requirements for 

future methodological innovations, as the discipline of archaeology sees a shift in analytical 

methods to ever higher resolution microscopic and even molecular approaches, the collection 

of archive samples should adapt accordingly. Large bulk soil and sediment samples are 
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unlikely to provide the resolution needed for these methods. Our recommendations are 

therefore to collect samples with an emphasis on distinct features to assess plant use for 

specific activities, with control/contemporaneous samples from outside the site, and to 

provide environmental information to accompany the archaeological contexts as part of a 

multi-proxy sediment profile. Samples for high resolution analyses should be collected with a 

paired micromorphology block to provide depositional and micro-contextual information. 

British phytolith studies also need better reference collections that focus on likely candidates 

for plants exploited in early prehistory, and crucially, further experimental studies are needed 

to better understand taphonomic processes in temperate soils. 

Conclusions 

 

Whilst phytolith analysis is challenging for British sites compared to areas where plants 

produce more phytoliths and those phytoliths are better preserved, it is not only possible but 

also potentially highly informative. The aims of this analysis were to test whether phytoliths 

could be recovered in significant quantities from this type of site, and whether they could 

provide any insight into human-environment relationships and plant use in prehistoric 

Britain. Our analyses indicate that phytoliths are preserved in significant quantities, including 

both monocot and dicot types, along with other siliceous microfossils including sponge 

spicules and diatoms, illustrating that significant quantities of well-preserved phytoliths can 

be recovered from archived samples from previously excavated British archaeological sites. 

However, interpretation of these assemblages from bulk archived samples, which are 

typically collected for generic future analyses, is problematic. Bulk samples have limited 

precise contextual information, which is needed to provide insights into the depositional 

pathways and formation processes of the assemblage. A viable solution to this problem is to 
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place pollen samples in long-term storage for future phytolith analysis, to be used as 

complementary contextual samples. Statistical analyses have revealed the variable 

composition of like-paired samples and highlight the need for sampling techniques that have 

the precision needed to mirror research questions.  

 

Overall, the Williamson’s Moss phytolith assemblage complements local environmental 

interpretation derived from earlier pollen studies and confirms that phytoliths from bulk 

samples have some utility in assessing local environmental conditions in cases where pollen 

is absent or poorly preserved. The relative ease of the phytolith extraction method means it is 

a modest additional time input if pollen analysis is already being planned. Future studies 

should combine high-resolution interval sampling of deposits with complementary techniques 

such as sediment micromorphology, which can provide context for informed interpretations. 
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Table 1: WM Area E1 and E2 sample summary (*, **, and *** indicate ‘like-paired samples’). Dates 
from Bonsall (2007). 

AREA E1 Structure One (4460- 4330 cal BC) 

Sample Sample Details 

1 EY 55 D spit 16 WM 137 

2 EY 55 D spit 17 WM 133* 

3 EY 55 D spit 17 WM 134* 

4 EY 55 D spit 18 WM 136** 

5 EY 55 D spit 18 WM 138** 

6 EY 55 D spit 19 WM 135 

AREA E2 Structure 5  (2030-1610 cal BC) 

7 EF 55 A spit 1 WM 691 

8 EF 51 A spit 2 WM 692 

9 EF 53 A spit 2 WM 693*** 

10 EF 53 A spit 2 WM 696*** 

11 EF 55 A spit 5 WM 697 

12 EF 53 A spit 5 WM 699 
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Table 2: Fisher’s Exact Test results on like-paired samples.   

 Long 
Cells  

Short 
Cells 

Aggregates Miscellaneous Total 

Sample 2 36 43 248 2 329 
Sample 3 135 99 83 15 332 
Total 171 142 331 17 661 
Fisher's Exact = 0.000 
      
      
 Long 

Cells 
Short 
Cells 

Aggregates Miscellaneous Total 

Sample 4 87 93 116 14 310 
Sample 5 124 105 61 55 345 
Total 211 198 177 69 655 
Fisher's Exact = 0.000 
      
      
 Long 

Cells  
Short 
Cells 

Aggregates Miscellaneous Total 

Sample 9 268 82 88 14 452 
Sample 10 104 114 95 31 344 
Total 372 196 183 45 796 
Fisher's Exact = 0.000 
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Table 3: Area E1 Phytolith Raw Counts, Groups, and Interpretations 

 Sample 
1 

Sample 
2 

Sample 
3 

Sample 
4 

Sample 
5 

Sample 
6 Group Category Interpretation 

Psilate Long Cells 15 10 42 31 28 22 

General Monocot - 
Long Cells 

General Monocot - 
leaves, stems, 
inflorescences 

Monocots 

Fragmented Psilate 
Long Cells 25 23 52 56 80 54 

Echinate Long Cells 0 0 34 0 16 3 

Polylobate Long Cell 0 0 0 0 0 0 

Cylindrical Long Cells 1 3 7 0 0 3 

Cuneiform Bulliform  0 0 0 0 8 0   

Scutiforms 0 0 3 0 24 1 

Globulars 38 8 23 17 25 14 

Ovates/ Oblongs  18 7 29 36 7 35 

Trichomes  51 13 28 31 30 31 

Bilobate Short Cells  0 0 2 0 1 0 General Monocot - 
Short Cells 

Poaceae, Panicoideae - 
C4 

Rondel Short Cells 15 15 14 9 10 13 Poaceae, Pooideae - C3 

Square Short Cells 62 45 49 53 35 42 

Platelets/Aggregates General Dicot - wood, 
bark, leaves Dicots 

Rugulated Irregular 
Platelets  17 132 9 36 6 0 

Rugulated, Irregular, 
Multicellular 
Aggregates  

50 71 18 26 7 1 

Laminated Multicellular 
Aggregates  0 0 7 0 0 0 

Hairs 1 0 0 1 13 5 

Mesophyll 0 2 3 0 0 3 

Short Cells - Misc. Miscellaneous Undiagnostic Polyhedral Short Cells  3 0 5 14 51 4 

Tracheids 0 0 7 0 4 0 

Total Phytolith Count  296 329 332 310 345 231    

          

Sponge Spicules  2 3 2 0 0 0 

Other Microremains Environmental 
Diatoms  0 0 48 6 24 6 

Fragmented Diatoms  4 0 29 12 25 5 

Microcharcoal  145 113 513 1232 884 1073 

Number of Transects 
Counted 4 6 4 5 4 7    
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Table 4: Area E2 Phytolith Raw Counts, Groups, and Interpretations 

Sample 
7 

Sample 
8 

Sample 
9*** 

Sample 
10*** 

Sample 
11 

Sample 
12 Group Category Interpretation 

Psilate Long Cells 24 29 76 45 18 75 

General Monocot - 
Long Cells 

General Monocot - 
leaves, stems, 
inflorescences 

Monocots 

Fragmented Psilate 
Long Cells 21 38 144 54 19 19 

Echinate Long Cells 0 0 37 3 0 16 

Polylobate Long Cell 1 1 11 1 0 4 

Cylindrical Long Cells 0 0 0 1 0 0 

Cuneiform Bulliform 3 2 3 7 6 7 

Scutiforms 12 10 0 4 2 10 

Globulars 26 43 13 15 18 21 

Ovates/ Oblongs 8 17 33 55 10 32 

Trichomes 11 32 14 20 81 21 

Bilobate Short Cells 0 5 2 0 0 0 General Monocot - 
Short Cells 

Poaceae, Panicoideae - 
C4 

Rondel Short Cells 6 20 17 13 25 28 Poaceae, Pooideae - C3 

Square Short Cells 32 59 55 50 51 114 

Platelets/Aggregates General Dicot - wood, 
bark, leaves Dicots 

Rugulated Irregular 
Platelets  0 0 0 0 0 0 

Rugulated, Irregular, 
Multicellular 
Aggregates  

103 52 28 45 11 0 

Laminated Multicellular 
Aggregates  0 3 1 0 3 0 

Hairs 7 10 4 0 9 10 

Mesophyll 0 4 0 1 0 0 

Short Cells - Misc. Miscellaneous Undiagnostic Polyhedral Short Cells 32 20 10 28 31 32 

Tracheids 1 0 4 2 2 3 

Total Phytolith Count 287 345 452 344 286 392 

Sponge Spicules 1 3 17 3 0 3 

Other Microremains Environmental 
Diatoms 3 3 38 3 2 48 

Fragmented Diatoms 5 2 26 1 3 56 

Microcharcoal 106 133 211 86 34 339 

Number of Transects 
Counted 5 6 4 4 4 4 
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Fig. 1 Williamson’s Moss, highlighting areas of phytolith sampling (Area E1 and E2), modified from 
Bonsall et al. (2007). 

Fig. 2 Area E1, Structure 1 (photo © Clive Bonsall). 

Fig. 3: Phytolith sample locations in Area E1 (Mesolithic/Neolithic transition), modified from Bonsall et 
al. (1989). The excavation was based on a grid of 1 m squares divided into 50 cm ‘quadrats’ to facilitate 
recording of the locations of artefacts and samples. 

Fig. 4: Phytolith sample locations in Area E2 (Bronze Age hearth), modified from Bonsall et al. (1989). 

Fig. 5: Number of phytoliths per gram of sediment in Area E1 (Samples 1-6) and Area E2 (Samples 7-12). 

Fig. 6: Summary diagram of Area E1. 

Fig. 7: Summary diagram of Area E2. 

Fig. 8: Monocot (grasses, sedges, reeds) to dicot (wood and bark) total percentages in Area E1 (Samples 
1-6) and Area E2 (Samples 7-12).

Fig. 9: Microcharcoal and Dicot Material as a percentage of the entire microremains in each sample.

Word Count: 5792/6000 
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