177 research outputs found

    Source levels of social sounds in migrating humpback whales (Megaptera novaeangliae)

    Get PDF
    The source level of an animal sound is important in communication, since it affects the distance over which the sound is audible. Several measurements of source levels of whale sounds have been reported, but the accuracy of many is limited because the distance to the source and the acoustic transmission loss were estimated rather than measured. This paper presents measurements of source levels of social sounds (surface-generated and vocal sounds) of humpback whales from a sample of 998 sounds recorded from 49 migrating humpback whale groups. Sources were localized using a wide baseline five hydrophone array and transmission loss was measured for the site. Social vocalization source levels were found to range from 123 to 183 dB re 1 mu Pa @ 1 m with a median of 158 dB re 1 mu Pa @ 1 m. Source levels of surface-generated social sounds ("breaches" and "slaps") were narrower in range (133 to 171 dB re 1 mu Pa @ 1 m) but slightly higher in level (median of 162 dB re 1 mu Pa @ 1 m) compared to vocalizations. The data suggest that group composition has an effect on group vocalization source levels in that singletons and mother-calf-singing escort groups tend to vocalize at higher levels compared to other group compositions. VC 2013 Acoustical Society of America

    Information theory analysis of Australian humpback whale song

    Get PDF
    Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). “Information entropy of humpback whale song,” J. Acoust. Soc. Am. 119, 1849–1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). “Songs of humpback whales,” Science 173, 587–597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976–1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs

    Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development. [Methodology/Principal Findings]: Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in addition to repressing the flowering promoting genes CONSTANS (CO), FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), BRM also represses expression of the general flowering repressor FLOWERING LOCUS C (FLC). Thus, in brm mutant plants FLC expression is elevated, and FLC chromatin exhibits increased levels of histone H3 lysine 4 tri-methylation and decreased levels of H3 lysine 27 tri-methylation, indicating that BRM imposes a repressive chromatin configuration at the FLC locus. However, brm mutants display a normal vernalization response, indicating that BRM is not involved in vernalization-mediated FLC repression. Analysis of double mutants suggests that BRM is partially redundant with the autonomous pathway. Analysis of genetic interactions between BRM and the histone H2A.Z deposition machinery demonstrates that brm mutations overcome a requirement of H2A.Z for FLC activation suggesting that in the absence of BRM, a constitutively open chromatin conformation renders H2A.Z dispensable. [Conclusions/Significance]: BRM is critical for phase transition in Arabidopsis. Thus, BRM represses expression of the flowering promoting genes CO, FT and SOC1 and of the flowering repressor FLC. Our results indicate that BRM controls expression of FLC by creating a repressive chromatin configuration of the locus.This work was supported by Ministerio de Educacin y Ciencia (BFU2008-00238, CSD2006-00049), and by Junta de Andaluca (P06-CVI-01400) to J.C.R. and by the National Institutes of Health (grant no. 1R01GM079525), and the National Science Foundation (grant no. 0446440) to R.A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components

    Get PDF
    Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis

    Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets

    Get PDF
    We have recently shown that two proteins containing RRM-type RNA-binding domains, FCA and FPA, originally identified through their role in flowering time control in Arabidopsis, silence transposons and other repeated sequences in the Arabidopsis genome. In flowering control, FCA and FPA function in the autonomous pathway with conserved chromatin regulators, the histone demethylase FLD and the MSI1-homologue FVE, a conserved WD-repeat protein found in many chromatin complexes. Here, we investigate how the RRM proteins interact genetically with these chromatin regulators at a range of loci in the Arabidopsis genome. We also investigate their interaction with the DNA methylation pathway. In several cases the RRM protein activity at least partially required a chromatin regulator to effect silencing. However, the interactions of the autonomous pathway components differed at each target analysed, most likely determined by certain properties of the target loci and/or other silencing pathways. We speculate that the RNA-binding proteins FCA and FPA function as part of a transcriptome surveillance mechanism linking RNA recognition with chromatin silencing mechanisms

    X chromosomal regulation in flies: when less is more

    Get PDF
    In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon

    Mobility, Expansion and Management of a Multi-Species Scuba Diving Fishery in East Africa

    Get PDF
    Background: Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. Methodology and Principal Findings: With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. Conclusions and Significance: This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates

    Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research

    Full text link
    corecore