290 research outputs found
Flare gamma ray continuum emission from neutral pion decay
We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models
Thermalisation of self-interacting solar flare fast electrons
Most theoretical descriptions of the production of solar flare bremsstrahlung
radiation assume the collision of dilute accelerated particles with a cold,
dense target plasma, neglecting interactions of the fast particles with each
other. This is inadequate for situations where collisions with this background
plasma are not completely dominant, as may be the case in, for example,
low-density coronal sources. We aim to formulate a model of a self-interacting,
entirely fast electron population in the absence of a dense background plasma,
to investigate its implications for observed bremsstrahlung spectra and the
flare energy budget. We derive approximate expressions for the time-dependent
distribution function of the fast electrons using a Fokker-Planck approach. We
use these expressions to generate synthetic bremsstrahlung X-ray spectra as
would be seen from a corresponding coronal source. We find that our model
qualitatively reproduces the observed behaviour of some flares. As the flare
progresses, the model's initial power-law spectrum is joined by a lower energy,
thermal component. The power-law component diminishes, and the growing thermal
component proceeds to dominate the total emission over timescales consistent
with flare observations. The power-law exhibits progressive spectral hardening,
as is seen in some flare coronal sources. We also find that our model requires
a factor of 7 - 10 fewer accelerated electrons than the cold, thick target
model to generate an equivalent hard X-ray flux. This model forms the basis of
a treatment of self-interactions among flare fast electrons, a process which
affords a more efficient means to produce bremsstrahlung photons and so may
reduce the efficiency requirements placed on the particle acceleration
mechanism. It also provides a useful description of the thermalisation of fast
electrons in coronal sources.Comment: 9 pages, 7 figures, accepted for Astronomy & Astrophysics; this
version clarifies arguments around Eqs. (11) and (20
A–C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions
Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A–C estrogens, lacking the B and D estrogen rings. The most potent and selective A–C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC50s of 20–30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound’s ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A–C estrogen is selective, brain penetrant, and facilitates memory consolidation
Impact of Unexpected Events, Shocking News and Rumours on Foreign Exchange Market Dynamics
We analyze the dynamical response of the world's financial community to
various types of unexpected events, including the 9/11 terrorist attacks as
they unfolded on a minute-by-minute basis. We find that there are various
'species' of news, characterized by how quickly the news get absorbed, how much
meaning and importance is assigned to it by the community, and what subsequent
actions are then taken. For example, the response to the unfolding events of
9/11 shows a gradual collective understanding of what was happening, rather
than an immediate realization. For news items which are not simple economic
statements, and hence whose implications are not immediately obvious, we
uncover periods of collective discovery during which collective opinions seem
to oscillate in a remarkably synchronized way. In the case of a rumour, our
findings also provide a concrete example of contagion in inter-connected
communities. Practical applications of this work include the possibility of
producing selective newsfeeds for specific communities, based on their likely
impact
Compton backscattered and primary X-rays from solar flares: angle dependent Green's function correction for photospheric albedo
The observed hard X-ray (HXR) flux spectrum from solar flares
is a combination of primary bremsstrahlung photons with a
spectrally modified component from photospheric Compton backscatter of downward
primary emission. The latter can be significant, distorting or hiding the true
features of the primary spectrum which are key diagnostics for acceleration and
propagation of high energy electrons and of their energy budget. For the first
time in solar physics, we use a Green's function approach to the backscatter
spectral deconvolution problem, constructing a Green's matrix including
photoelectric absorption. This approach allows spectrum-independent extraction
of the primary spectrum for several HXR flares observed by the {\it Ramaty High
Energy Solar Spectroscopic Imager} (RHESSI). We show that the observed and
primary spectra differ very substantially for flares with hard spectra close to
the disk centre. We show in particular that the energy dependent photon
spectral index is very different
for and for and that inferred mean source
electron spectra differ greatly. Even for a forward fitting of a
parametric to the data, a clear low-energy cutoff required to fit
essentially disappears when the fit is to - i.e.
when albedo correction is included. The self-consistent correction for
backscattered photons is thus shown to be crucial in determining the energy
spectra of flare accelerated electrons, and hence their total number and
energy.Comment: 8 pages, 8 figures, Accepted to Astronomy and Astrophysic
Self-consistent modeling of gamma-ray spectra from solar flares with the Monte Carlo simulation package FLUKA
We use the Monte Carlo particle physics code FLUKA (Fluktuierende Kaskade) to calculate γ -ray spectra expected from solar flare energetic ion distributions. The FLUKA code includes robust physics-based models for electromagnetic, hadronic and nuclear interactions, sufficiently detailed for it to be a useful tool for calculating nuclear de-excitation, positron-annihilation and neutron-capture line fluxes and shapes, as well as ≈GeV continuum radiation from pion decay products. We show nuclear de-excitation γ -ray line model spectra from a range of assumed primary accelerated ion distributions and find them to be in good agreement with those found using the code of Murphy et al. (2009). We also show full γ -ray model spectra which exhibit all the typical structures of γ -ray spectra observed in solar flares. From these model spectra we build templates which are incorporated into the software package Objective Spectral Executive (OSPEX) and used to fit the combined Fermi Gamma-ray Burst Monitor (GBM)/Large Area Telescope (LAT) spectrum of the 2010 June 12 solar flare, providing a statistically acceptable result. To the best of our knowledge, the fit carried out with the FLUKA templates for the full γ -ray spectrum can be regarded as the first attempt to use a single code to implement a self-consistent treatment of the several spectral components in the photon energy range from ≈100s keV to ≈100s MeV
Regularized energy-dependent solar flare hard x-ray spectral index
The deduction from solar flare X-ray photon spectroscopic data of the energy
dependent model-independent spectral index is considered as an inverse problem.
Using the well developed regularization approach we analyze the energy
dependency of spectral index for a high resolution energy spectrum provided by
Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization
technique produces much smoother derivatives while avoiding additional errors
typical of finite differences. It is shown that observations imply a spectral
index varying significantly with energy, in a way that also varies with time as
the flare progresses. The implications of these findings are discussed in the
solar flare context.Comment: 13 pages; 5 figures, Solar Physics in pres
Monte Carlo simulations of nuclear de-excitation gamma-ray line spectra from solar flares
Recently, we have demonstrated that the Monte Carlo package FLUKA can be used as an effective tool for simulating nuclear processes which occur in solar flares and that it is capable to provide a self-consistent treatment of all typical components of the γ-ray spectra observed in those events. In this work, we have employed a new simulation strategy that allows to improve statistics and resolution in energy of the generated γ-ray spectra. Using this new strategy, we have calculated spectra of γ-ray nuclear de-excitation lines produced by solar flare primary accelerated ions with typical power-law energy distributions
Imaging of atmospheric gravity waves in the stratosphere and upper mesosphere using satellite and ground-based observations over Australia during the TWPICE campaign
Extent: 20p.During the Tropical Warm Pool International Cloud Experiment (TWPICE) an intense tropical low was situated between Darwin and Alice Springs, Australia. Observations made on 31 January 2006 by the Atmospheric Infrared Sounder instrument on the NASA Aqua satellite imaged the presence of atmospheric gravity waves (AGWs), at approximately 40 km altitude, with horizontal wavelengths between 200 and 400 km that were originating from the region of the storm. Airglow images obtained from Alice Springs (about 600 km from the center of the low) showed the presence of similar waves with observed periods of 1 to 2 h. The images also revealed the presence of 30- to 45-km-horizontal-wavelength AGWs with shorter observed periods of near 15 to 25 min. Ray tracing calculations show that (1) some of the long wavelength waves traveled on rays, without ducting, to the altitudes where the observations were obtained, and (2) shorter-period waves rapidly reached 85 km altitude at a horizontal distance close to the storm, thus occurring over Alice Springs only if they were trapped or ducted. The mesospheric inversion layer seen in the measured temperature data almost forms such a trapped region. The winds therefore critically control the formation of the trapped region. Wind profiles deduced from the available data show the plausibility for the formation of such a trapped region. Variations in the wind, however, would make ideal trapped region conditions short-lived, and this may account for the sporadic nature of the short-period wave observations.J. H. Hecht, M. J. Alexander, R. L. Walterscheid, L. J. Gelinas, R. A. Vincent, A. D. MacKinnon, J. M. Woithe, P. T. May, W. R. Skinner, M. G. Mlynczak, and J. M. Russell II
- …