3,415 research outputs found
Shareholder engagement for corporate governance in the light of the harmonization and transposition
Purpose: This comparative study holistically assesses the EU harmonization and various transposition strategies embraced by EU member states to implement measures for corporate governance, namely for the sustainable corporate governance. Design/Methodology/Approach: The contribution and the relevant methodology is based on a duality of purposes. They are (i) on a review and analysis of EU harmonization endeavors designed to shape the exercise of shareholders rights and specifically encouraging a longterm shareholder engagement as the vehicle to increase corporate social responsibility (CSR) and (ii) on a pioneering critical comparative Meta-analysis of selected transposition strategies and their potential to testify about the genuiness of the underlying commitment. Findings: Based on the holistically implied arguments and yielded results, it is proposed that, despite rather clear EU harmonization measures, there are dramatic differences in transposition strategies testifying about deep differences in the approach to corporate governance and CSR across the EU. Practical implications: Based on addressing its dual purposes, this study sheds a new light on the perception and attitude to the corporate governance, shareholder long-term engagement, CSR and their framework in the EU. This leads to a set of recommendations to increase the effectiveness and efficiency of the current harmonization endeavors. Originality/Value: Although this study organically builds upon recent studies about corporate governance and CSR, it brings a pioneering comparative assessment of transposition strategies and an innovative idea to use it as a well founded instrument to understand and appreciate the harmonization potential in this field and to improve it.peer-reviewe
Mode identification in rapidly rotating stars
Context: Recent calculations of pulsation modes in rapidly rotating polytropic models and models based on the Self-Consistent Field method have shown that the frequency spectrum of low degree pulsation modes can be described by an empirical formula similar to Tassoul's asymptotic formula, provided that the underlying rotation profile is not too differential.
Aims: Given the simplicity of this asymptotic formula, we investigate whether it can provide a means by which to identify pulsation modes in rapidly rotating stars.
Methods: We develop a new mode identification scheme which consists in scanning a multidimensional parameter space for the formula coefficients which yield the best-fitting asymptotic spectra. This mode identification scheme is then tested on artificial spectra based on the asymptotic formula, on random frequencies and on spectra based on full numerical eigenmode calculations for which the mode identification is known beforehand. We also investigate the effects of adding random frequencies to mimic the effects of chaotic modes which are also expected to show up in such stars.
Results: In the absence of chaotic modes, it is possible to accurately find a correct mode identification for most of the observed frequencies provided these frequencies are sufficiently close to their asymptotic values. The addition of random frequencies can very quickly become problematic and hinder correct mode identification. Modifying the mode identification scheme to reject the worst fitting modes can bring some improvement but the results still remain poorer than in the case without chaotic modes
Infrequent small bowel intestinal bacterial overgrowth in malnourished Zambian children.
There is evidence that children with malnutrition have an increased frequency of small intestinal bacterial overgrowth (SIBO) due to impaired gastric acidity, impaired intestinal motility, and dysbiosis. Children with malnutrition respond to antibiotic therapy but it is not clear if this effect is mediated by treatment of SIBO. We set out to determine the frequency of SIBO in children of varying nutritional status in a poor community in Lusaka, Zambia. Hydrogen breath testing, following a dose of 1g/kg oral glucose, was used to determine the presence of SIBO amongst the study participants. Forty nine children, 45 of whom had varying degrees of malnutrition, completed a full series of observations at 15, 30 and 60 minutes. Four children (8%) had a rise of 10ppm from baseline, consistent with SIBO. No correlation with nutritional status was observed. In this small study of Zambian children, SIBO was infrequent and unrelated to nutritional status
Predicting total reaction cross sections for nucleon-nucleus scattering
Nucleon total reaction and neutron total cross sections to 300 MeV for 12C
and 208Pb, and for 65 MeV spanning the mass range, are predicted using
coordinate space optical potentials formed by full folding of effective
nucleon-nucleon interactions with realistic nuclear ground state densities.
Good to excellent agreement is found with existing data.Comment: 10 pages, 4 figure
Pulsation modes in rapidly rotating stellar models based on the Self-Consistent Field method
Context: New observational means such as the space missions CoRoT and Kepler
and ground-based networks are and will be collecting stellar pulsation data
with unprecedented accuracy. A significant fraction of the stars in which
pulsations are observed are rotating rapidly.
Aims: Our aim is to characterise pulsation modes in rapidly rotating stellar
models so as to be able to interpret asteroseismic data from such stars.
Methods: The pulsation code developed in Ligni\`eres et al. (2006) and Reese
et al. (2006) is applied to stellar models based on the self-consistent field
(SCF) method (Jackson et al. 2004, 2005, MacGregor et al. 2007).
Results: Pulsation modes in SCF models follow a similar behaviour to those in
uniformly rotating polytropic models, provided that the rotation profile is not
too differential. Pulsation modes fall into different categories, the three
main ones being island, chaotic, and whispering gallery modes, which are
rotating counterparts to modes with low, medium, and high l-|m| values,
respectively. The frequencies of the island modes follow an asymptotic pattern
quite similar to what was found for polytropic models. Extending this
asymptotic formula to higher azimuthal orders reveals more subtle behaviour as
a function of m and provides a first estimate of the average advection of
pulsation modes by rotation. Further calculations based on a variational
principle confirm this estimate and provide rotation kernels that could be used
in inversion methods. When the rotation profile becomes highly differential, it
becomes more and more difficult to find island and whispering gallery modes at
low azimuthal orders. At high azimuthal orders, whispering gallery modes, and
in some cases island modes, reappear.Comment: 16 pages, 11 figures, accepted for publication in A&
Technical Design Report for the PANDA Micro Vertex Detector
This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is
outlined
Decontamination of the hospital environment : new technologies for infection control
Environmental contamination is being increasingly recognized as a significant source of healthcare-associated infection (HAI). Cross-contamination of the patient from the environment can result from the direct transfer of organisms from the air and surfaces, or indirectly from the hospital environment via contact with healthcare workers or equipment. Traditional methods of environmental decontamination, including cleaning with disinfectants, and the standard infection control procedures implemented by modern Health Services, are critical to controlling the spread of potentially pathogenic microbial contaminants from environmental sources to the patient; however there is constant pressure to maintain, and indeed, improve on the standards that are in place to ensure optimal patient care. To address this issue, much research has been directed towards the development and testing of novel ‘whole-room’ environmental decontamination methods which could be used to enhance hospital hygiene, and consequently reduce the risk of HAI-acquisition from environmental sources. Gaseous methods such as the use of hydrogen peroxide, chlorine dioxide, ozone and steam, as well as ultraviolet and violet-blue visible light methods have all been laboratory tested, and to varying extents, clinically evaluated to assess their efficacy for environmental decontamination. This review article considers these different decontamination technologies, discussing their mechanism of action, antimicrobial efficacy, and advantages and limitations, with a view to providing the reader with a comprehensive overview of the technological advances being developed to reduce the levels of environmental contamination around patient areas, thus aiding in the fight against healthcare-associated infection
Photoproduction of eta-mesic 3He
The photoproduction of eta-mesic 3He has been investigated using the TAPS
calorimeter at the Mainz Microtron accelerator facility MAMI. The total
inclusive cross section for the reaction gamma+3He->eta+X has been measured for
photon energies from threshold to 820 MeV. The total and angular differential
coherent eta cross sections have been extracted up to energies of 745 MeV. A
resonance-like structure just above the eta production threshold with an
isotropic angular distribution suggests the existence of a resonant quasi-bound
state. This is supported by studies of a competing decay channel of such a
quasi-bound eta-mesic nucleus into pi^0+p+X. A binding energy of (-4.4+-4.2)
MeV and a width of (25.6+-6.1) MeV is deduced for the quasi-bound eta-mesic
state in 3He.Comment: v1: 4 pages, 4 figures, submitted to PRL; v2: minor revisions and
corrections, new figure added, 4 pages, 5 figs; v3: minor change
Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)
This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the
PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface
Mitochondrial DNA is critical for longevity and metabolism of transmission stage Trypanosoma brucei.
The sleeping sickness parasite Trypanosoma brucei has a complex life cycle, alternating between a mammalian host and the tsetse fly vector. A tightly controlled developmental programme ensures parasite transmission between hosts as well as survival within them and involves strict regulation of mitochondrial activities. In the glucose-rich bloodstream, the replicative 'slender' stage is thought to produce ATP exclusively via glycolysis and uses the mitochondrial F1FO-ATP synthase as an ATP hydrolysis-driven proton pump to generate the mitochondrial membrane potential (ΔΨm). The 'procyclic' stage in the glucose-poor tsetse midgut depends on mitochondrial catabolism of amino acids for energy production, which involves oxidative phosphorylation with ATP production via the F1FO-ATP synthase. Both modes of the F1FO enzyme critically depend on FO subunit a, which is encoded in the parasite's mitochondrial DNA (kinetoplast or kDNA). Comparatively little is known about mitochondrial function and the role of kDNA in non-replicative 'stumpy' bloodstream forms, a developmental stage essential for disease transmission. Here we show that the L262P mutation in the nuclear-encoded F1 subunit γ that permits survival of 'slender' bloodstream forms lacking kDNA ('akinetoplastic' forms), via FO-independent generation of ΔΨm, also permits their differentiation into stumpy forms. However, these akinetoplastic stumpy cells lack a ΔΨm and have a reduced lifespan in vitro and in mice, which significantly alters the within-host dynamics of the parasite. We further show that generation of ΔΨm in stumpy parasites and their ability to use α-ketoglutarate to sustain viability depend on F1-ATPase activity. Surprisingly, however, loss of ΔΨm does not reduce stumpy life span. We conclude that the L262P γ subunit mutation does not enable FO-independent generation of ΔΨm in stumpy cells, most likely as a consequence of mitochondrial ATP production in these cells. In addition, kDNA-encoded genes other than FO subunit a are important for stumpy form viability
- …