14 research outputs found

    Freshwater displacement effect on the Weddell Gyre carbon budget

    Get PDF
    This work was funded by NSF's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under NSF awards PLR-1425989 and OPP-1936222. G.A.M was additionally supported under UKRI Grant MR/W013835/1. M.R.M. also acknowledges support from NASA grant 80NSSC20K1076 and NSF grants OCE-1924388 and OPP-2149501.The Weddell Gyre mediates carbon exchange between the abyssal ocean and atmosphere, which is critical to global climate. This region also features large and highly variable freshwater fluxes due to seasonal sea ice, net precipitation, and glacial melt; however, the impact of these freshwater fluxes on the regional carbon cycle has not been fully appreciated. Using a novel budget analysis of dissolved inorganic carbon (DIC) mass in the Biogeochemical Southern Ocean State Estimate, we highlight two freshwater-driven transports. Where freshwater with minimal DIC enters the ocean, it displaces DIC-rich seawater outwards, driving a lateral transport of 75 ± 5 Tg DIC/year. Additionally, sea ice export requires a compensating import of seawater, which carries 48 ± 11 Tg DIC/year into the gyre. Though often overlooked, these freshwater displacement effects are of leading order in the Weddell Gyre carbon budget in the state estimate and in regrouped box-inversion estimates, with implications for evaluating basin-scale carbon transport.Publisher PDFPeer reviewe

    High-latitude ocean ventilation and its role in Earth's climate transitions

    Get PDF
    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered

    Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf

    Get PDF
    C.J.P., G.A.M., M.R.M., L.D.T., and S.T.G. were supported by NSF PLR-1425989 and OPP-1936222 (Southern Ocean Carbon and Climate Observations and Modeling project). C.J.P. received additional support from a NOAA Climate & Global Change Postdoctoral Fellowship. G.A.M. received additional support from UKRI Grant Ref. MR/W013835/1. G.E.M. was supported by NSF OPP-2220969. R.Q.P. was supported by the High Meadows Environmental Institute Internship Program. R.M. was supported by the General Sir John Monash Foundation. A.F.T. was supported by NSF OPP-1644172 and NASA grant 80NSSC21K0916. M.R.M. also acknowledges funding from NSF awards OCE-1924388 and OPP-2319829 and NASA awards 80NSSC22K0387 and 80NSSC20K1076.West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.Publisher PDFPeer reviewe

    Lagrangian ocean analysis: fundamentals and practices

    Get PDF
    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing

    Characterizing the chaotic nature of ocean ventilation

    No full text
    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional filamentation number, which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces-implying highly chaotic ventilation pathways-and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior. Plain Language Summary When water leaves the surface ocean and spreads into the ocean interior, it carries with it climatically important properties that have been exchanged with the overlying atmosphere, such as heat and carbon dioxide. It is likely that a significant part of this ventilation process is achieved by relatively small-scale (around 50-100 km) eddying motions, which are ubiquitous in the turbulent ocean, but this remains poorly understood and difficult to quantify. By drawing an analogy with the making of puff pastry - in which the baker thins the layers of dough by repeated stretching and folding - we propose a novel way of quantifying the role of eddying motions in ventilation. We evaluate the extent to which the eddying motions (the baker) generate thin filaments in a fluid parcel (the dough) in the ocean interior. This, in turn, indicates whether pathways of water from the surface ocean into the ocean interior are straightforward or chaotic. In a numerical ocean simulation, we show that the latter is true - pathways are highly chaotic - supporting the case that eddying motions play an important role in the ventilation process

    Potential predictability of the spring bloom in the Southern Ocean sea ice zone

    Get PDF
    This work was supported by the High Meadows Environmental Institute at Princeton University and the NSF's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF Award PLR-1425989. F.A.H. was supported by NASA Grant 80NSSC19K1115 and by the European Union (ERC, VERTEXSO, 101041743). G.A.M was supported under SOCCOM and UKRI Grant MR/W013835/1. T.L.F was supported by Swiss National Science Foundation (Grant P00P2_198897) and the Swiss National Supercomputing Centre. N.L was supported by the European Union's Horizon 2020 research and innovation program under Grant 820989 (project COMFORT) and no. 862923 (project AtlantECO) as well as the Bretscher Funds.Every austral spring when Antarctic sea ice melts, favorable growing conditions lead to an intense phytoplankton bloom, which supports much of the local marine ecosystem. Recent studies have found that Antarctic sea ice is predictable several years in advance, suggesting that the spring bloom might exhibit similar predictability. Using a suite of perfect model predictability experiments, we find that November net primary production (NPP) is potentially predictable 7 to 10 years in advance in many Southern Ocean regions. Sea ice extent predictability peaks in late winter, followed by absorbed shortwave radiation and NPP with a 2 to 3 months lag. This seasonal progression of predictability supports our hypothesis that sea ice and light limitation control the inherent predictability of the spring bloom. Our results suggest skillful interannual predictions of NPP may be achievable, with implications for managing fisheries and the marine ecosystem, and guiding conservation policy in the Southern Ocean.Publisher PDFPeer reviewe

    Locations and mechanisms of ocean ventilation in the high-latitude North Atlantic in an eddy-permitting ocean model

    No full text
    A substantial fraction of the deep ocean is ventilated in the high-latitude North Atlantic. Consequently, the region plays a crucial role in transient climate change through the uptake of carbon dioxide and heat. However, owing to the Lagrangian nature of the process, many aspects of deep Atlantic Ocean ventilation and its representation in climate simulations remain obscure. We investigate the nature of ventilation in the high latitude North Atlantic in an eddy-permitting numerical ocean circulation model using a comprehensive set of Lagrangian trajectory experiments. Backwards-in-time trajectories from a model-defined ‘North Atlantic DeepWater’ (NADW) reveal the locations of subduction from the surface mixed layer at high spatial resolution. The major fraction of NADW ventilation results from subduction in the Labrador Sea, predominantly within the boundary current (̴ 60% of ventilated NADW volume) and a smaller fraction arising from open ocean deep convection (̴ 25%). Subsurface transformations — due in part to the model’s parameterization of bottom-intensified mixing—facilitate NADWventilation, such that water subducted in the boundary current ventilates all of NADW, not just the lighter density classes. There is a notable absence of ventilation arising from subduction in the Greenland-Iceland-Norwegian Seas, due to the re-entrainment of those waters as they move southward. Taken together, our results emphasize an important distinction between ventilation and dense water formation in terms of the location where each takes place, and their concurrent sensitivities. These features of NADW ventilation are explored to understand how the representation of high-latitude processes impacts properties of the deep ocean in a state-of-the-science numerical simulation

    Enhanced subglacial discharge from Antarctica during meltwater pulse 1A

    Get PDF
    This research is funded by the National Natural Science Foundation of China (41991325, T.L. and T.C.), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40010200, T.L. and T.C.), the European Research Council, the Natural Environmental Research Council, the U.S. National Science Foundation (PLR-1425989, G.A.M), the UK Research and Innovation (MR/W013835/1, G.A.M), the National Oceanic and Atmospheric Administration (NOAA) Ocean Exploration Trust, and the State Key Laboratory of Palaeobiology and Stratigraphy.Subglacial discharge from the Antarctic Ice Sheet (AIS) likely played a crucial role in the loss of the ice sheet and the subsequent rise in sea level during the last deglaciation. However, no direct proxy is currently available to document subglacial discharge from the AIS, which leaves significant gaps in our understanding of the complex interactions between subglacial discharge and ice-sheet stability. Here we present deep-sea coral 234U/238U records from the Drake Passage in the Southern Ocean to track subglacial discharge from the AIS. Our findings reveal distinctively higher seawater 234U/238U values from 15,400 to 14,000 years ago, corresponding to the period of the highest iceberg-rafted debris flux and the occurrence of the meltwater pulse 1A event. This correlation suggests a causal link between enhanced subglacial discharge, synchronous retreat of the AIS, and the rapid rise in sea levels. The enhanced subglacial discharge and subsequent AIS retreat appear to have been preconditioned by a stronger and warmer Circumpolar Deep Water, thus underscoring the critical role of oceanic heat in driving major ice-sheet retreat.Publisher PDFPeer reviewe
    corecore