76 research outputs found

    Effect of enhanced pCO2 levels on the production of dissolved organic carbon and transparent exopolymer particles in short-term bioassay experiments

    Get PDF
    It has been proposed that increasing levels of pCO(2) in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO(2) scenarios (ambient, 550, 750 and 1000 mu atm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO(2) on DOC production. There was a significant but highly variable effect of pCO(2) on the production of TEPs. In three of the five experiments, variation of TEP production between pCO(2) treatments was caused by the effect of pCO(2) on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO(2) (twice as much production over the 96 h incubation period in the 750 mu atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO(2) perturbations

    The gist of instructional leadership practised in Swaziland primary schools

    Get PDF
    A growing body of scholarship links instructional leadership to effective teaching and learning. This article looks at the ‘what’ of instructional leadership as practised in Swaziland primary schools. A qualitative investigation was undertaken based on individual and focus group interviews conducted at eight primary schools in the Hhohho region of Swaziland. The findings show that demonstrative leadership accompanied by collaborative support and recognition for achievement are important features of an effective instructional leadership programme. The main limitations to optimal learning are the collection of school fees during school hours and balancing English as the language of instruction with preserving the indigenous language. The findings emphasize the importance of mutual effort as the main component of effective teaching and learning.IS

    A marine biogenic source of atmospheric ice nucleating particles

    Get PDF
    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties1,2. The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Sea spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer12-19. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice nucleating material is likely biogenic and less than ~0.2 ÎŒm in size. We find that exudates separated from cells of the marine diatom T. Pseudonana nucleate ice and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol in combination with our measurements suggest that marine organic material may be an important source of ice nucleating particles in remote marine environments such as the Southern Ocean, North Pacific and North Atlantic

    A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere

    Get PDF

    Demons in the North Atlantic: Variability of deep ocean ventilation

    Get PDF
    Translation of atmospheric forcing variability into the ocean interior via ocean ventilation is an important aspect of transient climate change. On a seasonal timescale in the subtropics, this translation is mediated by a so‐called “Demon” that prevents access to all except late‐winter mixed‐layer water. Here, we use an eddy‐permitting numerical circulation model to investigate a similar process operating on longer (interannual) timescales in the subpolar North Atlantic. We find that variations in atmospheric forcing are mediated in their translation to the ocean interior, with year‐to‐year changes in the late‐winter mixed layer depth being the critical factor. The signature of persistent strong atmospheric forcing driving deep mixed layers is preferentially ventilated to the interior when the forcing is ceased. Susceptibility to this effect depends on the location and density of subduction — with the rate at which newly ventilated water escapes its region of subduction being the crucial factor. Plain Language Summary Water that leaves the ocean's surface boundary layer — where water is in direct contact with the overlying atmosphere — to be transported into the subsurface, is said to be “ventilated” (the name arising from the abundance of oxygen in newly ventilated water). The ventilation process, which carries implications for the ocean storage of climate‐relevant substances such as carbon dioxide, occurs only at certain times and under certain conditions. In describing a mechanism for the selective nature of ventilation over the seasonal cycle, Henry Stommel imagined a Demon sitting at the base of the surface boundary layer, granting access only to parcels of water that meet certain characteristics (namely their speed of “escape”). Thus, “Stommel's Demon” was born. Here, we investigate this same process as it operates in more northerly regions and on longer timescales. In so doing we give birth to a new “interannual Demon”, and describe its characteristics
    • 

    corecore