197 research outputs found
Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes
Background: Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5âUTRs, correlates with gene dosage sensitivity. Results: We investigate 5âUTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5âUTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5âUTR length and complexity. Genes that are most intolerant to LoF have longer 5âUTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. Conclusions: Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them
Universal Ecological Patterns in College Basketball Communities
The rank abundance of common and rare species within ecological communities is remarkably consistent from the tropics to the tundra. This invariant patterning provides one of ecology's most enduring and unified tenets: most species rare and a few very common. Increasingly, attention is focused upon elucidating biological mechanisms that explain these species abundance distributions (SADs), but these evaluations remain controversial. We show that college basketball wins generate SADs just like those observed in ecological communities. Whereas college basketball wins are structured by competitive interactions, the result produces a SAD pattern indistinguishable from random wins. We also show that species abundance data for tropical trees exhibits a significant-digit pattern consistent with data derived from complex structuring forces. These results cast doubt upon the ability of SAD analysis to resolve ecological mechanism, and their patterning may reflect statistical artifact as much as biological processes
Ecological distribution and population physiology defined by proteomics in a natural microbial community
Community proteomics applied to natural microbial biofilms resolves how the physiology of different populations from a model ecosystem change with measured environmental factors in situ.The initial colonists, Leptospirillum Group II bacteria, persist throughout ecological succession and dominate all communities, a pattern that resembles community assembly patterns in some macroecological systems.Interspecies interactions, and not abiotic environmental factors, demonstrate the strongest correlation to physiological changes of Leptospirillum Group II.Environmental niches of subdominant populations seem to be determined by combinations of specific sets of abiotic environmental factors
Hyper Suprime-Cam Year 3 Results: Cosmology from Cosmic Shear Two-point Correlation Functions
We perform a blinded cosmology analysis with cosmic shear two-point
correlation functions (2PCFs) measured from more than 25 million galaxies in
the Hyper Suprime-Cam three-year shear catalog in four tomographic redshift
bins ranging from 0.3 to 1.5. After conservative masking and galaxy selection,
the survey covers 416 deg of the northern sky with an effective galaxy
number density of 15 arcmin over the four redshift bins. The 2PCFs
adopted for cosmology analysis are measured in the angular range: for and
for , with a total signal-to-noise ratio of 26.6. We apply a
conservative, wide, flat prior on the photometric redshift errors on the last
two tomographic bins, and the relative magnitudes of the cosmic shear amplitude
across four redshift bins allow us to calibrate the photometric redshift
errors. With this flat prior on redshift errors, we find and (both 68\% CI) for a flat cold dark
matter cosmology. We find, after unblinding, that our constraint on is
consistent with the Fourier space cosmic shear and the 32pt analyses on
the same HSC dataset. We carefully study the potential systematics from
astrophysical and systematic model uncertainties in our fiducial analysis using
synthetic data, and report no biases (including projection bias in the
posterior space) greater than in the estimation of . Our
analysis hints that the mean redshifts of the two highest tomographic bins are
higher than initially estimated. In addition, a number of consistency tests are
conducted to assess the robustness of our analysis. Comparing our result with
Planck-2018 cosmic microwave background observations, we find a ~
tension for the CDM model.Comment: 38 pages, 32 figures, 4 tables (PRD in press.
Recommended from our members
Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions
We perform a blinded cosmology analysis with cosmic shear two-point correlation functions measured from more than 25 million galaxies in the Hyper Suprime-Cam three-year shear catalog in four tomographic redshift bins ranging from 0.3 to 1.5. After conservative masking and galaxy selection, the survey covers 416 deg2 of the northern sky with an effective galaxy number density of 15 arcmin-2 over the four redshift bins. The 2PCFs adopted for cosmology analysis are measured in the angular range; 7.1<Ξ/arcmin<56.6 for ζ+ and 31.2<Ξ/arcmin<248 for ζ-, with a total signal-to-noise ratio of 26.6. We apply a conservative, wide, flat prior on the photometric redshift errors on the last two tomographic bins, and the relative magnitudes of the cosmic shear amplitude across four redshift bins allow us to calibrate the photometric redshift errors. With this flat prior on redshift errors, we find Ïm=0.256-0.044+0.056 and S8Ï8Ïm/0.3=0.769-0.034+0.031 (both 68% C.I.) for a flat Î cold dark matter cosmology. We find, after unblinding, that our constraint on S8 is consistent with the Fourier space cosmic shear and the 3Ă2 pt analyses on the same HSC dataset. We carefully study the potential systematics from astrophysical and systematic model uncertainties in our fiducial analysis using synthetic data, and report no biases (including projection bias in the posterior space) greater than 0.5Ï in the estimation of S8. Our analysis hints that the mean redshifts of the two highest tomographic bins are higher than initially estimated. In addition, a number of consistency tests are conducted to assess the robustness of our analysis. Comparing our result with Planck-2018 cosmic microwave background observations, we find a âŒ2Ï tension for the ÎCDM model
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Hyper Suprime-Cam Year 3 results: cosmology from cosmic shear power spectra
We measure weak lensing cosmic shear power spectra from the 3-year galaxy shear catalog of the Hyper Suprime-Cam (HSC) Subaru Strategic Program imaging survey. The shear catalog covers 416ââdeg2 of the northern sky, with a mean i-band seeing of 0.59 arcsec and an effective galaxy number density of 15ââarcminâ2 within our adopted redshift range. With an i-band magnitude limit of 24.5 mag, and four tomographic redshift bins spanning 0.3â€zphâ€1.5 based on photometric redshifts, we obtain a high-significance measurement of the cosmic shear power spectra, with a signal-to-noise ratio of approximately 26.4 in the multipole range 300<â<1800. The accuracy of our power spectrum measurement is tested against realistic mock shear catalogs, and we use these catalogs to get a reliable measurement of the covariance of the power spectrum measurements. We use a robust blinding procedure to avoid confirmation bias, and model various uncertainties and sources of bias in our analysis, including point spread function systematics, redshift distribution uncertainties, the intrinsic alignment of galaxies and the modeling of the matter power spectrum. For a flat ÎCDM model, we find S8âĄÏ8(Ωm/0.3)0.5=0.776+0.032â0.033, which is in excellent agreement with the constraints from the other HSC Year 3 cosmology analyses, as well as those from a number of other cosmic shear experiments. This result implies a âŒ2Ï-level tension with the Planck 2018 cosmology. We study the effect that various systematic errors and modeling choices could have on this value, and find that they can shift the best-fit value of S8 by no more than âŒ0.5Ï, indicating that our result is robust to such systematics
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
- âŠ