84 research outputs found

    Genetic diversity within and genetic differentiation between blooms of a microalgal species

    Get PDF
    The field of genetic diversity in protists, particularly phytoplankton, is under expansion. However, little is known regarding variation in genetic diversity within populations over time. The aim of our study was to investigate intrapopulation genetic diversity and genetic differentiation in the freshwater bloom-forming microalga Gonyostomum semen (Raphidophyceae). The study covered a 2-year period including all phases of the bloom. Amplified fragment length polymorphism (AFLP) was used to determine the genetic structure and diversity of the population. Our results showed a significant differentiation between samples collected during the two blooms from consecutive years. Also, an increase of gene diversity and a loss of differentiation among sampling dates were observed over time within a single bloom. The latter observations may reflect the continuous germination of cysts from the sediment. The life cycle characteristics of G. semen, particularly reproduction and recruitment, most likely explain a high proportion of the observed variation. This study highlights the importance of the life cycle for the intraspecific genetic diversity of microbial species, which alternates between sexual and asexual reproduction.Postprin

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure

    The ecogenetic link between demography and evolution : can we bridge the gap between theory and data?

    Get PDF
    Calls to understand the links between ecology and evolution have been common for decades. Population dynamics, i.e. the demographic changes in populations, arise from life history decisions of individuals and thus are a product of selection, and selection, on the contrary, can be modified by such dynamical properties of the population as density and stability. It follows that generating predictions and testing them correctly requires considering this ecogenetic feedback loop whenever traits have demographic consequences, mediated via density dependence (or frequency dependence). This is not an easy challenge, and arguably theory has advanced at a greater pace than empirical research. However, theory would benefit from more interaction between related fields, as is evident in the many near-synonymous names that the ecogenetic loop has attracted. We also list encouraging examples where empiricists have shown feasible ways of addressing the question, ranging from advanced data analysis to experiments and comparative analyses of phylogenetic data

    Exploiting a PAX3-FOXO1-induced synthetic lethal ATR dependency for rhabdomyosarcoma therapy

    Get PDF
    Pathognomonic PAX3-FOXO1 fusion oncogene expression is associated with poor outcome in rhabdomyosarcoma. Combining genome-wide CRISPR screening with cell-based functional genetic approaches, we here provide evidence that PAX3-FOXO1 induces replication stress, resulting in a synthetic lethal dependency to ATR-mediated DNA damage-response signaling in rhabdomyosarcoma. Expression of PAX3-FOXO1 in muscle progenitor cells was not only sufficient to induce hypersensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibited increased sensitivity to structurally diverse inhibitors of ATR, a dependency that could be validated genetically. Mechanistically, ATR inhibition led to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increased sensitivity of rhabdomyosarcoma cells to PARP inhibition in vitro, and combined ATR and PARP inhibition induced regression of primary patient-derived alveolar rhabdomyosarcoma xenografts in vivo. Moreover, a genome-wide CRISPR activation screen (CRISPRa) identified FOS gene family members as inducers of resistance against ATR inhibitors. Mechanistically, FOS gene family members reduced replication stress in rhabdomyosarcoma cells. Lastly, compassionate use of ATR inhibitors in two pediatric patients suffering from relapsed PAX3-FOXO1-expressing alveolar rhabdomyosarcoma showed signs of tolerability, paving the way to clinically exploit this novel synthetic lethal dependency in rhabdomyosarcoma

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Therapeutic targeting of ATR in alveolar rhabdomyosarcoma

    Get PDF
    Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS
    corecore