22 research outputs found

    Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar

    Get PDF
    Abstract Background Cassava mosaic disease (CMD) in Madagascar is caused by a complex of at least six African cassava mosaic geminivirus (CMG) species. This provides a rare opportunity for a comparative study of the evolutionary and epidemiological dynamics of distinct pathogenic crop-infecting viral species that coexist within the same environment. The genetic and spatial structure of CMG populations in Madagascar was studied and Bayesian phylogeographic modelling was applied to infer the origins of Madagascan CMG populations within the epidemiological context of related populations situated on mainland Africa and other south western Indian Ocean (SWIO) islands. Results The isolation and analysis of 279 DNA-A and 117 DNA-B sequences revealed the presence in Madagascar of four prevalent CMG species (South African cassava mosaic virus, SACMV; African cassava mosaic virus, ACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV), and of numerous CMG recombinants that have, to date, only ever been detected on this island. SACMV and ACMV, the two most prevalent viruses, displayed low degrees of genetic diversity and have most likely been introduced to the island only once. By contrast, EACMV-like CMG populations (consisting of East African cassava mosaic virus, EAMCKV, EACMCV and complex recombinants of these) were more diverse, more spatially structured, and displayed evidence of at least three independent introductions from mainland Africa. Although there were no statistically supported virus movement events between Madagascar and the other SWIO islands, at least one mainland African ACMV variant likely originated in Madagascar. Conclusions Our study highlights both the complexity of CMD in Madagascar, and the distinct evolutionary and spatial dynamics of the different viral species that collectively are associated with this disease. Given that more distinct CMG species and recombinants have been found in Madagascar than any other similarly sized region of the world, the risks of recombinant CMG variants emerging on this island are likely to be higher than elsewhere. Evidence of an epidemiological link between Madagascan and mainland African CMGs suggests that the consequences of such emergence events could reach far beyond the shores of this island

    Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies

    Get PDF
    Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize \u3e 80 % of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1 - 69 and IGKV3 - 20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206 - CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6 % of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5 3 -fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, andW680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope

    Ongoing geographical spread of Tomato yellow leaf curl virus

    Get PDF
    Tomato yellow leaf curl virus (TYLCV) seriously impacts tomato production throughout tropical and sub-tropical regions of the world. It has a broad geographical distribution and continues to spread to new regions in the Indian and Pacific Oceans including Australia, New Caledonia and Mauritius. We undertook a temporally-scaled, phylogeographic analysis of all publicly available, full genome sequences of TYLCV, together with 70 new genome sequences from Australia, Iran and Mauritius. This revealed that whereas epidemics in Australia and China likely originated through multiple independent viral introductions from the East-Asian region around Japan and Korea, the New Caledonian epidemic was seeded by a variant from the Western Mediterranean region and the Mauritian epidemic by a variant from the neighbouring island of Reunion. Finally, we show that inter-continental scale movements of TYLCV to East Asia have, at least temporarily, ceased, whereas long-distance movements to the Americas and Australia are probably still ongoing

    The global distribution of Banana bunchy top virus reveals little evidence for frequent recent, human-mediated long distance dispersal events

    Get PDF
    Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years

    Supplementary Material for: Accessing Carboxylesterase Diversity from Termite Hindgut Symbionts through Metagenomics

    No full text
    A shotgun metagenomic library was constructed from termite hindgut symbionts and subsequently screened for esterase activities. A total of 68 recombinant clones conferring esterolytic phenotypes were identified, of which the 14 most active were subcloned and sequenced. The nucleotide lengths of the esterase-encoding open reading frames (ORFs) ranged from 783 to 2,592 bp and encoded proteins with predicted molecular masses of between 28.8 and 97.5 kDa. The highest identity scores in the GenBank database, from a global amino acid alignment ranged from 39 to 83%. The identified ORFs revealed the presence of the G-X-S-X-D, G-D-S-X, and S-X-X-K sequence motifs that have been reported to harbour a catalytic serine residue in other previously reported esterase primary structures. Five of the ORFs (EstT5, EstT7, EstT9, EstT10, and EstT12) could not be classified into any of the original eight esterase families. One of the ORFs (EstT9) showed a unique primary structure consisting of an amidohydrolase-esterase fusion. Six of the 14 esterase-encoding genes were recombinantly expressed in <i>Escherichia coli</i> and the purified enzymes exhibited temperature optima of between 40–50°C. Substrate-profiling studies revealed that the characterised enzymes were ‘true’ carboxylesterases based on their preferences for short to medium chain length <i>p</i>-nitrophenyl ester substrates. This study has demonstrated a successful application of a metagenomic approach in accessing novel esterase-encoding genes from the gut of termites that could otherwise have been missed by classical culture enrichment approaches

    IgG isolated from individuals that develop bNAbs shows increased gp120-specific binding to Fc receptors and complement proteins.

    No full text
    <p>(<b>A</b>) Binding gp120 ConC-specific IgG isolated from bNAb (red) and no-bNAb (blue) individuals to Fc receptors and C1q measured by an antigen-specific Fc receptor multiplex array. Significant differences (calculated by Mann-Whitney U test) in binding are shown as *p<0.05; **p<0.001; ***p<0.0001. Data are representative of 2 independent experiments. (<b>B</b>) The ratio of activating FcγRIIa (either H131 or R131) to inhibitory FcγRIIb receptor binding at 6 months post infection for bNAb and no-bNAb individuals. Medians are shown and significance was calculated by the Mann-Whitney U test. (<b>C</b>) Correlations between ADCT or ADCD and binding to Fc receptors and C1q shown as MFI. Significant Spearman´s correlation coefficients are indicated. Lines indicate the trend of the correlations.</p

    Fc effector function early in HIV infection is higher in individuals that develop bNAbs.

    No full text
    <p>(<b>A</b>) Purified IgG from 13 bNAb, 10 no-bNAb and 5 HIV-negative individuals (in red, blue and grey respectively) at 6 months post-infection was tested for antibody dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular trogocytosis (ADCT) and cellular cytoxicity (ADCC) using three HIV-specific antigens gp120 ConC, gp140 C.ZA.1197MB and gp120 CAP45.G3. Significant differences between groups determined by the Mann-Whitney U test are indicated by *p<0.05; **p<0.001. (<b>B</b>) Medians and IQR of different Fc effector functions for bNAb and no-bNAb individuals against all tested antigens over 36 months of infection are indicated as cumulative Fc effector function. Data are representative of 3 independent experiments. (<b>C</b>) Each Fc function was standardized by calculating a Z-score and polyfunctionality determined by addition of the Z-scores for all functions for each individual. Bars above the x-axis indicate Fc polyfunctional individuals, while those below indicate poor Fc polyfunctionality. bNAb and no-bNAb individuals are indicated in red and blue respectively. (<b>D</b>) Spearman´s correlation coefficient for the relationship between the Fc polyfunctionality Z-score and % neutralization breadth calculated by a 44 multi-clade virus panel is shown. The dashed diagonal line indicates the trend of the relationship.</p

    Multivariate classifications reveal that individuals who develop bNAbs can be reliably identified by their Fc features at 6 months of infection.

    No full text
    <p>(<b>A</b>) Principal components analysis of 13 bNAb (red) and 10 no-bNAb (blue) using 17 variables. Individual CAPRISA identifiers are shown, with component 1 and 2 explaining 52.3% of the variance in the data set. (<b>B</b>) Confusion matrix showing the classification of bNAb and no-bNAb individuals achieved by random forest classification. Shown are the numbers of individuals for each predicted or observed group with correct classifications indicated in color and misclassifications indicated in white. The 2 bNAb (CAP257 and CAP292) and 2 no-bNAb (CAP88 and CAP228) individuals that were incorrectly classified can be seen in 5A. (<b>C</b>) Importance of the features employed in the random forest classification is indicated by the mean decrease in Gini importance weighting. (<b>D</b>) The model was verified by permutation testing following random shuffling of the classification data 100,000 times. The dashed line indicates the accuracy of the proposed model (82.6%), with shuffles resulting in accuracy greater than this shown as a proportion of the total shuffles (0.38%).</p
    corecore