29 research outputs found

    Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures with Free Body Motion

    Full text link
    Negative imaginary (NI) systems play an important role in the robust control of highly resonant flexible structures. In this paper, a generalized NI system framework is presented. A new NI system definition is given, which allows for flexible structure systems with colocated force actuators and position sensors, and with free body motion. This definition extends the existing definitions of NI systems. Also, necessary and sufficient conditions are provided for the stability of positive feedback control systems where the plant is NI according to the new definition and the controller is strictly negative imaginary. The stability conditions in this paper are given purely in terms of properties of the plant and controller transfer function matrices, although the proofs rely on state space techniques. Furthermore, the stability conditions given are independent of the plant and controller system order. As an application of these results, a case study involving the control of a flexible robotic arm with a piezo-electric actuator and sensor is presented

    Simple broadband circularly polarized monopole antenna with two asymmetrically connected U-shaped parasitic strips and defective ground plane

    Get PDF
    A simple compact broadband circularly polarized monopole antenna, which comprises a simple monopole, a modified ground plane with an implementing triangular stub and two asymmetrically connected U-shaped parasitic strips, is proposed. Simulation results show that the proposed compact antenna (0.62λo×0.68λo) achieves a 10-dB impedance bandwidth (IBW) of 111% (1.7 to 5.95 GHz) and a 3-dB axial ratio bandwidth (ARBW) of 61% (3.3–6.2 GHz) with a peak gain between 2.9–4 dBi for the entire ARBW. With its broad IBW and ARBW, compact size and simple structure, the proposed antenna is suitable for different wireless communications

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A Comparative Study of the Efficiency of two Different Glass Ionomer Using ART Technique in a Group of Egyptian Children with Autistic Spectrum Disorder

    No full text
    Aim: The aim of the study was to evaluate and compare the effect of conventional glass ionomer cement and Nano-glass ionomer using atraumatic restorative technique (ART) in a group of Egyptian autistic children.Materials and Methods: Thirty autistic patients had cavitated lower first primary molars (class I only) were included in this study. According to the type of restorative material used, the children were classified into 2 groups: (Group I) their teeth were restored with conventional glass ionomer, (Group II) their teeth were restored with Nano-glass ionomer (ketac N 100). All children were checked clinically, radio graphically and for bacterial count evaluation at baseline (before treatment) and after 1 week, 2 weeks, 1 month, 3 months and 6 months.Results: After 6 months, group I showed statistically significant higher prevalence of pain, food stagnation, restoration defects and widening of lamina dura than group II while for bacterial count evaluation, the microbiological assay results show there was no statistically significant difference between the two groups.Conclusion: The results indicate that Nano-glass ionomer can be considered a successful alternative restorative material for ART technique with promising results in treatment of children with autistic spectrum disorder.</p
    corecore