92 research outputs found

    Location Determination of Optimal Emergency System for Hurricane Disaster Based on Mathematical Modeling

    Get PDF
    This article first introduces the current research status of space optical communication, and gives a brief overview of the development and application prospects of space optical communication, explaining its important research significance. Then, the working principle of ATP in space optical communication system is studied, the mathematical model of ATP control system is established according to the actual needs, and the ATP control system design of space optical communication is designed. By selecting appropriate motors and gyroscopes as the actuators and detection elements of the system, substituting the actual parameters for simulation analysis, and correcting and verifying the results, some useful results are obtained. The simulation results show the rationality and effectiveness of the ATP design scheme

    Accelerated Cavitation Damage of Steels in Liquid Metal Environments

    Get PDF
    Cavitation can be described as a hydrodynamic phenomenon which involves in the formation and collapse of vapor bubbles in a liquid medium. It always accelerates the cavitation damage and brings about multi-scale interactions of cavitation erosion between materials and fluids. For example, corrosion by dissolution/reaction can accelerate cavitation erosion under different liquid temperatures and velocities to alter interface films, and multiphase interface structure can also in turn affect the interfacial flow regime to induce cavitation in various fluids. In this chapter, interfacial characteristics and erosion-corrosion mechanism of directionally solidified (DS) Fe-B alloy with various Fe2B lamellar spacing in flowing zinc were investigated. The results indicate that the formation of adhesive interfacial film not only depends on erosion time and Fe2B lamellar spacing, but also relies on epitaxial ζ accumulation determined by zinc flow effect. Meanwhile, microturbulence of flowing zinc can result in the formation of slip bands and erosion pits on the ζ-FeZn13 surface. The flow-induced localized corrosion appears to accelerate the erosion-corrosion damage of interfacial adhesive film structure and morphology, which reveals underlying erosion mechanism of liquid metal

    HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    Get PDF
    AbstractAdipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2 transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity

    Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Get PDF
    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations. Nat Commun 2018 Feb 16; 9(1):702

    Multi-locus Test Conditional on Confirmed Effects Leads to Increased Power in Genome-wide Association Studies

    Get PDF
    Complex diseases or phenotypes may involve multiple genetic variants and interactions between genetic, environmental and other factors. Current genome-wide association studies (GWAS) mostly used single-locus analysis and had identified genetic effects with multiple confirmations. Such confirmed single-nucleotide polymorphism (SNP) effects were likely to be true genetic effects and ignoring this information in testing new effects of the same phenotype results in decreased statistical power due to increased residual variance that has a component of the omitted effects. In this study, a multi-locus association test (MLT) was proposed for GWAS analysis conditional on SNPs with confirmed effects to improve statistical power. Analytical formulae for statistical power were derived and were verified by simulation for MLT accounting for confirmed SNPs and for single-locus test (SLT) without accounting for confirmed SNPs. Statistical power of the two methods was compared by case studies with simulated and the Framingham Heart Study (FHS) GWAS data. Results showed that the MLT method had increased statistical power over SLT. In the GWAS case study on four cholesterol phenotypes and serum metabolites, the MLT method improved statistical power by 5% to 38% depending on the number and effect sizes of the conditional SNPs. For the analysis of HDL cholesterol (HDL-C) and total cholesterol (TC) of the FHS data, the MLT method conditional on confirmed SNPs from GWAS catalog and NCBI had considerably more significant results than SLT

    Effect of Modifying Prosthetic Socket Base Materials by Adding Nanodiamonds

    Get PDF
    The curing process of prosthetic socket base materials requires attention owing to a series of associated problems that are yet to be addressed and solved. However, to date, few relevant studies have been reported. In this paper, nanodiamonds modified with a silane coupling agent were dispersed into a prosthetic socket base material, and the performance of the modified base materials was investigated. Adding a predetermined amount of nanodiamonds to the prosthetic socket base material increased the glass transition temperature, improved the mechanical properties of the cured base material, and reduced the influence of the volatile gas formed during the curing process on the environment. With increasing nanodiamond contents, the glass transition temperature increased and the mechanical properties improved slightly. Owing to the high thermal conductivity of the nanodiamonds, the localized heat, as a result of the curing process, could be dissipated and released. Thus, adding nanodiamonds led to a more uniform temperature field forming in the curing system. This improved the curing process and reduced the formation of volatile monomers, thereby decreasing the adverse impact of the generated volatile gases on the environment. All of these provide a potential strategy for modifying prosthetic socket base materials
    • …
    corecore