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In the low-dimensional case, the generalized additive coefficient
model (GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006)
1423–1446] has been demonstrated to be a powerful tool for studying
nonlinear interaction effects of variables. In this paper, we propose
estimation and inference procedures for the GACM when the dimen-
sion of the variables is high. Specifically, we propose a groupwise
penalization based procedure to distinguish significant covariates for
the “large p small n” setting. The procedure is shown to be consistent
for model structure identification. Further, we construct simultaneous
confidence bands for the coefficient functions in the selected model
based on a refined two-step spline estimator. We also discuss how to
choose the tuning parameters. To estimate the standard deviation of
the functional estimator, we adopt the smoothed bootstrap method.
We conduct simulation experiments to evaluate the numerical per-
formance of the proposed methods and analyze an obesity data set
from a genome-wide association study as an illustration.

1. Introduction. Regression analysis is a commonly used statistical tool
for modeling the relationship between a scalar dependent variable Y and one
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2 MA, CARROLL, LIANG AND XU

or more explanatory variables denoted as T= (T1, T2, . . . , Tp)
T. To study the

marginal effects of the predictors on the response, one may fit a generalized
linear model (GLM),

E(Y |T) = µ(T) = g−1{η(T)}, η(T) =

p∑

ℓ=1

αℓ0Tℓ,(1)

where g is a known monotone link function, and αℓ0, 1 ≤ ℓ ≤ p, are un-
known parameters. Sometimes, the effect of one variable may change with
other variables; that is, there is an interaction effect. By letting T1 = 1, to
incorporate the interaction effects of T and the other variables, denoted as
X = (X1, . . . ,Xd)

T, model (1) can be modified to E(Y |X,T) = µ(X,T) =
g−1{η(X,T)} with

η(X,T) = α10 +

p∑

ℓ=2

αℓ0Tℓ +

d∑

k=1

α1kXk +

p∑

ℓ=2

d∑

k=1

αℓkXkTℓ,(2)

where αℓk for 0≤ k ≤ d and 1≤ ℓ≤ p are parameters. After a direct refor-
mulation, model (2) can be written as

η(X,T) =

p∑

ℓ=1

(
αℓ0 +

d∑

k=1

αℓkXk

)
Tℓ.(3)

Here the effect of each Tℓ changes linearly with Xk. However, in practice,
this simple linear relationship may not reflect the true changing patterns of
the coefficient with other covariates. We here use an example of gene and
environment (G×E) interactions for illustration. It has been noticed in the
literature that obesity is linked to genetic factors. Their effects, however,
can be altered under different environmental factors such as sleeping hours
[Knutson (2012)] and physical activity [Wareham, van Sluijs and Ekelund
(2005)]. To have a rough idea of how the effects of the genetic factors change
with the environment, we explore data from the Framingham Heart Study
[Dawber, Meadors and Moore (1951)]. In Figure 1 we plot the estimated
mean body mass index (BMI) against sleeping hours per day and activity
hours per day, respectively, for people with three possible genotype cate-
gories represented by AA, Aa and aa, and for one single nucleotide poly-
morphism (SNP). A detailed description and the analysis of this data set
are given in Section 5. We define allele A as the minor (less frequent) allele.
This figure clearly shows different nonlinear curves for the three groups in
each of the two plots. By letting Tℓ be the indicator for the group ℓ, the
linear function in model (3) is clearly misspecified.
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Fig. 1. Plots of the estimated BMI against sleeping hours per day (left panel) and activity
hours per day (right panel) for the three genotypes AA (solid line), Aa (dashed line) and
aa (dotted line) of SNP rs242263 in the Framingham study, where A is the minor allele.

To relax the linearity assumption, we allow each αℓkXk term to be an
unknown nonlinear function of Xk, and thus extend model (3) to the gen-
eralized additive coefficient model (GACM)

η(X,T) =

p∑

ℓ=1

{
αℓ0 +

d∑

k=1

αℓk(Xk)

}
Tℓ =

p∑

ℓ=1

αℓ(X)Tℓ.(4)

For identifiability, the functional components satisfy E{αℓk(Xk)}= 0 for 1≤
k ≤ d and 1≤ ℓ≤ p. The conditional variance of Y is modeled as a function of
the mean, that is, var(Y |X,T) = V {µ(X,T)}= σ2(X,T). In each coefficient
function of the GACM, covariates Xk are continuous variables. If some of
them are discrete, they will enter linearly. For example, if Xk is binary, we
let αℓk(Xk) = αℓkXk. In such a case, model (4) turns out to be a partially
linear additive coefficient model. The linearity of (4) in Tℓ is particularly
appropriate when those factors are discrete, for example, SNPs in a genome-
wide association study (GWAS), as in the data example of Section 5.

For the low-dimensional case that the dimensions of X and T are fixed,
estimation of model (4) has been studied; see Xue and Yang (2006), Xue
and Liang (2010), Liu and Yang (2010) for a spline estimation procedure
and Lee, Mammen and Park (2012) for a backfitting algorithm. In modern
data applications, model (4), however, is particularly useful when p is large.
For example, in GWAS, the number of SNPs, which is p, can be very large,
but the dimension of X such as the environmental factors, which is d, is
inevitably relatively small. Moreover, the number of variables in T which
have nonzero effects is small. It therefore, poses new challenges to apply
model (4) to the high-dimensional case including: (i) how to identify those
important variables in T, (ii) how to estimate the coefficient functions for
the important covariates and (iii) how to conduct inferences for the nonzero
coefficient functions. For example, it is of interest to know whether they are
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a function of a specific parametric form such as constant, linear or quadratic,
etc.

In the high-dimensional data setting, studying nonlinear interaction ef-
fects has found much attention in recent years, and a few strategies have
been proposed. For example, Jiang and Liu (2014) proposed to detect vari-
ables under the general index model, which enables the study of high-order
interactions among components of continuous predictors, which are assumed
to have a multivariate normal distribution. Moreover, Lian (2012) considered
variable selection in varying coefficient models which allows the coefficient
functions to depend on one index variable, such as a time-dependent vari-
able.

When we would like to see how the effect of each genetic factor changes
under the influence of multiple environmental variables, the proposed high-
dimensional GACM (4) becomes a natural approach to consider, since both
the index model [Jiang and Liu (2014)] and the varying coefficient model
[Lian (2012)] cannot address this question; the former is used to study inter-
actions of components in a set of continuous predictors, and the latter only
allows one index variable. For model selection and estimation, we apply a
groupwise penalization method. Moreover, most existing high-dimensional
nonparametric modeling papers [Meier, van de Geer and Bühlmann (2009),
Ravikumar et al. (2009), Huang, Horowitz and Wei (2010), Lian (2012),
Wang et al. (2014)] focus on variable selection and estimation. In this pa-
per, after variable selection, we also propose a simultaneous inferential tool
to further test the shape of the coefficient function for each selected variable,
which has not been studied in the previous works.

To this end, we aim to address questions (i)–(iii). Specifically, for esti-
mation and model selection, we apply a groupwise regularization method
based on a penalized quasi-likelihood criterion. The penalty is imposed on
the L2 norm of the spline coefficients of the spline estimators for αℓ(·). We
establish the asymptotic consistency of model selection and estimation for
the proposed group penalized estimators with the quasi-likelihood criterion
in the high-dimensional GACM (4). We allow p to grow with n at an almost
exponential order. Importantly, establishment of these results is technically
more difficult than other work based on least squares, since no closed-form
of the estimators exists from the penalized quasi-likelihood method.

After selecting the important variables, the next question of interest is
what shapes the nonzero coefficient functions may have. Then we need to
provide an inferential tool to further check whether a coefficient function has
some specific parametric form. For example, when it is a constant or a linear
function, the corresponding covariate has no or linear interaction effects with
another covariate, respectively. For global inference, we construct simulta-
neous confidence bands (SCBs) for the nonparametric additive functions
based on a two-step estimation procedure. By using the selected variables,
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we first propose a refined two-step spline estimator for the function of in-
terest, which is proved to have a pointwise asymptotic normal distribution
and oracle efficiency. We then establish the bounds for the SCBs based on
the absolute maxima distribution of a Gaussian process and on the strong
approximation lemma [Csörgő and Révész (1981)]. Some other related works
on SCBs for nonparametric functions include Hall and Titterington (1988),
Härdle and Marron (1991), Claeskens and Van Keilegom (2003), among
others. We provide an asymptotic formula for the standard deviation of the
spline estimator for the coefficient function, which involves unknown pop-
ulation parameters to be estimated. The formula has somewhat complex
expressions and contains many parameters. Direct estimation therefore may
be not accurate, particularly with the small or moderate sample sizes. As
an alternative, the bootstrap method provides us a reliable way to calculate
the standard deviation by avoiding estimating those population parameters.
We here apply the smoothed bootstrap method suggested by Efron (2014),
which advocated that the method can improve coverage probability to cal-
culate the pointwise estimated standard deviations for the estimators of the
coefficient functions. This method was originally proposed for calculating
the estimated standard deviation of the estimate of a parameter of interest,
such as the conditional mean. We extend this method to the case of func-
tional estimation. We demonstrate by simulation studies in Section 4 that
compared to the traditional resampling bootstrap method, the smoothed
bootstrap method can successfully improve the empirical coverage rate.

The paper is organized as follows. Section 2 introduces the B-spline es-
timation procedure for the nonparametric functions, describes the adap-
tive group Lasso estimators and the initial Lasso estimators and presents
asymptotic results. Section 3 describes the two-step spline estimators and
introduces the simultaneous confidence bands and the bootstrap methods
for calculating the estimated standard deviation. Section 4 describes simu-
lation studies, and Section 5 illustrates the method through the analysis of
an obesity data set from a genome-wide association study. Proofs are in the
Appendix and additional supplementary material [Ma et al. (2015)].

2. Penalization based variable selection. Let (Yi,X
T
i ,T

T
i ), i = 1, . . . , n,

be random vectors that are independently and identically distributed as
(Y,XT,TT), where Xi = (Xi1, . . . ,Xid)

T and Ti = (Ti1, . . . , Tip)
T. Write the

negative quasi-likelihood function Q(µ, y) =
∫ y
µ {(y − ζ)/V (ζ)}dζ . Estima-

tion of the mean function can be achieved by minimizing the negative quasi-
likelihood of the observed data

n∑

i=1

Q{g−1{η(Xi,Ti)}, Yi}.(5)
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2.1. Spline approximation. We approximate the smooth functions αℓk(·),
1≤ k ≤ d and 1≤ ℓ≤ p in (4) by B-splines. As in most work on nonparamet-
ric smoothing, estimation of the functions αℓk(·) is conducted on compact
sets. Without loss of generality, let the compact set be X = [0,1]. Let G0

n be
the space of polynomial splines of order q ≥ 2. We introduce a sequence of
spline knots

t−q−1 = · · ·= t−1 = t0 = 0< t1 < · · ·< tN < 1 = tN+1 = · · ·= tN+q,

where N ≡ Nn is the number of interior knots. In the following, let Jn =
Nn + q. For 0 ≤ j ≤ N , let Hj = tj+1 − tj be the distance between neigh-
boring knots and let H = max0≤s≤N Hj . Following Zhou, Shen and Wolfe
(1998), to study asymptotic properties of the spline estimators for αℓk(·), we
assume that max0≤j≤N−1 |Hj+1−Hj|= o(N−1) and H/min0≤j≤N Hj ≤M ,
where M > 0 is a predetermined constant. Such an assumption is neces-
sary for numerical implementation. In practice, we can use the quantiles
as the locations of the knots. Let {bj,k(xk) : 1 ≤ j ≤ Jn}T be the qth or-
der B spline basis functions given on page 87 of de Boor (2001). For posi-
tive numbers an and bn, an ≍ bn means that limn→∞ an/bn = c, where c is
some nonzero finite constant. For 1≤ j ≤ Jn, we adopt the centered B-spline
functions given in Xue and Yang (2006) such that Bj,k(xk) =

√
N [bj,k(xk)−

{E(bj,k)/E(b1,k)}b1,k(xk)], so that E{Bj,k(Xk)}= 0 and var{Bj,k(Xk)} ≍ 1.
Define the space Gn of additive spline functions as the linear space spanned
by B(x) = {1,Bj,k(xk),1≤ j ≤ Jn,1≤ k ≤ d}T, where x= (x1, . . . , xd)

T. Ac-
cording to the result on page 149 of de Boor (2001), for αℓk(·) satisfying

condition (C3) in Appendix A.2 such that α
(r−1)
ℓk (xk) ∈ C0,1[0,1] for given

integer r ≥ 1, where C0,1[0,1] is the space of Lipschitz continuous functions
on [0,1] defined in Appendix A.2, there is a function

α0
ℓk(xk) =

Jn∑

j=1

γj,ℓkBj(xk) ∈G0
n,(6)

such that supxk∈[0,1] |α0
ℓk(xk)−αℓk(xk)|=O(J−r

n ). Then for every 1≤ ℓ≤ p,
αℓ(x) can be approximated well by a linear combination of spline functions
in G0

n, so that

αℓ(x)≈ α0
ℓ (x) = γℓ0 +

d∑

k=1

Jn∑

j=1

γj,ℓkBj,k(xk) =B(x)Tγℓ,(7)

where γℓ = (γℓ0,γ
T
ℓ1, . . . ,γ

T
ℓd)

T, in which γℓk = (γj,ℓk : 1≤ j ≤ Jn)
T. Thus the

minimization problem in (5) is equivalent to finding γ̃
0 = (γ̃0T

ℓ ,1≤ ℓ≤ p)T

with γ̃
0
ℓ = (γ̃0ℓ0, γ̃

0T
ℓ1 , . . . , γ̃

0T
ℓd )

T and γ̃
0
ℓk = (γ̃0j,ℓk : 1 ≤ j ≤ Jn)

T to minimize∑n
i=1Q[g−1{∑p

ℓ=1B(Xi)
T
γℓTℓ}, Yi]. The components of the additive coef-

ficients are estimated by α̃0
ℓk(xk) =

∑Jn
j=1 γ̃

0
j,ℓkBj(xk) =B(x)Tγ̃0

ℓk and α̃0
ℓ0 =

γ̃0ℓ0.
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2.2. Adaptive group Lasso estimator. We now describe the procedure
for estimating and selecting the additive coefficient functions by using the
adaptive group Lasso. The estimators are obtained by minimizing a pe-
nalized negative quasi-likelihood criterion. We establish asymptotic selec-
tion consistency as well as the convergence rate of the estimators to the
true nonzero functions. For any vector a = (a1, . . . , as)

T, let its L2 norm

be ‖a‖2 =
√

a21 + · · ·+ a2s. For any measurable L2-integrable function φ on
[0,1]d, define the L2 norm as ‖φ‖2 =E{φ2(X)}.

We are interested in identifying the significant components of the vector
T = (T1, . . . , Tp)

T. Let s, a fixed number, be the total number of nonzero
αℓ’s and I1 = {ℓ : ‖αℓ‖ 6= 0,1 ≤ ℓ≤ p}. Let I2 be the complementary set of
I1; that is, I2 = {ℓ : αℓ(·)≡ 0,1≤ ℓ≤ p}. Recalling the approximation given
in (7), γℓ is zero if and only if each element of γℓ is zero; that is, ‖γℓ‖2 = 0.
We apply the adaptive group Lasso approach in Huang, Horowitz and Wei
(2010) for variable selection in model (4). In order to identify zero additive
coefficients, we penalize the L2 norm of the coefficients γℓ for 1≤ ℓ≤ p. Let
wn = (wn1, . . . ,wnp)

T be a given vector of weights, which needs to be chosen
appropriately to achieve selection consistency. Their choice will be discussed
in Section 2.3. We consider the penalized negative quasi-likelihood

Ln(γ) =

n∑

i=1

Q

[
g−1

{
p∑

ℓ=1

BT(Xi)γℓTℓ

}
, Yi

]
+ nλn

p∑

ℓ=1

wnℓ‖γℓ‖2,(8)

where λn is a regularization parameter controlling the amount of shrinkage.
The estimator γ̂ = (γ̂T

1 , . . . , γ̂
T
p )

T is obtained by minimizing (8). Minimiza-
tion of (8) is solved by local quadratic approximation as adopted by Fan
and Li (2001).

For ℓ= 1, . . . , p, the ℓth additive coefficient function is estimated by

α̂ℓ(x) = γ̂ℓ0 +

d∑

k=1

Jn∑

j=1

γ̂j,ℓkBj,k(xk) =BT(x)γ̂ℓ.

We will make the following two assumptions on the order requirements of
the tuning parameters. Write wn,I1 = (wnℓ : ℓ ∈ I1).

Assumption 1. J2
n{n log(n)}−1 → 0 and λn‖wn,I1‖2 → 0, as n→∞.

Assumption 2. nλn‖wn,I1‖2+n1/2J
1/2
n

√
log(pJn)+nJ−r

n = o(nλnwnℓ),
for all ℓ ∈ I2.

The following theorem presents the selection consistency and estimation
properties of the adaptive group Lasso estimators.



8 MA, CARROLL, LIANG AND XU

Theorem 1. Under conditions (C1)–(C5) in the Appendix and Assump-
tions 1 and 2: (i) as n→ ∞, P (‖α̂ℓ‖ > 0, ℓ ∈ I1 and ‖α̂ℓ‖ = 0, ℓ ∈ I2) → 1,

and (ii) ‖α̂ℓ −αℓ‖=Op(λn‖wn,I1‖2 + n−1/2J
1/2
n + J−r

n ), ℓ ∈ I1.

2.3. Choice of the weights. We now discuss how to choose the weights
used in (8) based on the initial estimates. For low-dimensional data settings
with p < n, an unpenalized estimator such as least squares estimator [Zou
(2006)] can be used as an initial estimate. For high-dimensional settings with
p≫ n, it has been discussed [Meier and Bühlmann (2007)] that the Lasso
estimator is a more appropriate choice. Following Huang, Horowitz and Wei
(2010), we obtain an initial estimate with the group Lasso by minimizing

Ln1(γ) =

n∑

i=1

Q

[
g−1

{
p∑

ℓ=1

B(Xi)
T
γℓTℓ

}
, Yi

]
+ nλn1

p∑

ℓ=1

‖γℓ‖2,

with respect to γ = (γT
1 , . . . ,γ

T
p )

T. Denote the resulting estimators by γ̃ =

(γ̃T
1 , . . . , γ̃

T
p )

T. Let Ĩ1 = {ℓ : ‖γ̃ℓ‖2 6= 0,1 ≤ ℓ≤ p}, and let s̃ be the number

of elements in Ĩ1.
Under conditions (C1)–(C5) in the Appendix, and when λn1 ≥Cn−1/2 ×

J
1/2
n

√
log(pJn) for a sufficiently large constant C, we have: (i) the number

of estimated nonzero functions are bounded; that is, as n→∞, there exists
a constant 1 < C1 < ∞ such that P (s̃ ≤ C1s) → 1; (ii) if λn1 → 0, then

P (‖γ̃ℓ‖2 > 0 for all l ∈ I1)→ 1; (iii) ‖γ̃ − γ‖2 =Op(λn1 + n−1/2J
1/2
n + J−r

n ).
We refer to Theorems 1(i) and (ii) of Huang, Horowitz and Wei (2010) for
the proofs of (i) and (ii), and Theorem 1 in our paper for the proof of (iii).

The weights we use are wnℓ = ‖γ̃ℓ‖−1
2 , if ‖γ̃ℓ‖2 > 0; wnℓ =∞, if ‖γ̃ℓ‖2 = 0.

Remark 1. Assumptions 1 and 2 give the order requirements of Jn
and λn. Based on the condition that J2

n{n log(n)}−1 → 0 given in Assump-
tion 1, we need Jn ≪{n log(n)}1/2, where an ≪ bn denotes that an/bn = o(1)

for any positive numbers an and bn, and λn needs to satisfy n−1/2J
1/2
n ×√

log(pJn){minℓ∈I2(wnℓ)}−1 ≪ λn ≪ 1. From the above theoretical prop-
erties of the group Lasso estimators, we know that, with probability ap-
proaching 1, ‖γ̃ℓ‖2 > 0 for nonzero components, and then the corresponding
weights wnℓ are bounded away from 0 and infinity for ℓ ∈ I1. By defin-
ing 0 · ∞= 0, the components not selected by the group Lasso are not in-
cluded in the adaptive group Lasso procedure. Let Jn ≍ n1/(2r+1), so that
Jn has the optimal order for spline regression. If p= exp[o{n2r/(2r+1)}], then
n−1/2J

1/2
n

√
log(pJn)→ 0. This means the dimension p can diverge with the

sample size at an almost exponential rate.
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2.4. Selection of tuning parameters. Tuning parameter selection always
plays an important role in model and variable selection. An underfitted
model can lead to severely biased estimation, and an overfitted model can se-
riously degrade the estimation efficiency. Among different data-driven meth-
ods, the Bayesian information criterion (BIC) tuning parameter selector has
been shown to be able to identify the true model consistently in the fixed
dimensional setting [Wang, Li and Tsai (2007)]. In the high-dimensional
setting, an extend BIC (EBIC) and a generalized information criterion have
been proposed by Chen and Chen (2008) and Fan and Tang (2013), respec-
tively. In this paper, we adopt the EBIC method [Chen and Chen (2008)] to
select the tuning parameter λn in (8). Specifically, the EBIC(λn) is defined
as

2
n∑

i=1

(
Q

[
g−1

{
p∑

ℓ=1

B(Xi)
T
γ̂ℓTiℓ

}
, Yi

])
+ s∗(1+ dJn) log(n)+ 2ν log

(
p
s∗

)
,

where (γ̂ℓ)
p
ℓ=1 is the minimizer of (8) for a given λn, s

∗ is the number of
nonzero estimated functions (α̂ℓ)

p
ℓ=1 and 0 ≤ ν ≤ 1 is a constant. Here we

use ν = 0.5. When ν = 0, the EBIC is ordinary BIC.
We use cubic B-splines for the nonparametric function estimation, so that

q = 4. In the penalized estimation procedure, we let the number of interior
knots N = ⌊cn1/(2q+1)⌋ satisfy the optimal order, where ⌊a⌋ denotes the
largest integer no greater than a and c is a constant. In the simulations, we
take c= 2.

3. Inference and the bootstrap smoothing procedure.

3.1. Background. After model selection, our next step is to conduct sta-
tistical inference for the coefficient functions of those important variables.
We will establish a simultaneous confidence band (SCB) based on a two-
step estimator for global inference. An asymptotic formula of the SCB will
be provided based on the distribution of the maximum value of the normal-
ized deviation of the spline functional estimate. To improve accuracy, we
calculate the estimated standard deviation in the SCB by using the non-
parametric bootstrap smoothing method as discussed in Efron (2014). For
specificity, we focus on the construction of αℓ1(x1), with αℓk(xk) for k ≥ 2

defined similarly, for ℓ ∈ Î1, where Î1 = {ℓ : ‖α̂ℓ‖ 6= 0,1≤ ℓ≤ p}.
Although the one-step penalized estimation in Section 2 can quickly iden-

tify nonzero coefficient functions, no asymptotic distribution is available for
the resulting estimators. Thus we construct the SCB based on a refined two-
step spline estimator for αℓ1(x1), which will be shown to have the oracle
property that the estimator of αℓ1(x1) has the same asymptotic distribu-
tion as the univariate oracle estimator obtained by pretending that αℓ0 and
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αℓk(Xk) for ℓ ∈ Î1, k ≥ 2 and αℓ(X) for ℓ /∈ Î1 are known. See Horowitz and
Mammen (2004), Horowitz, Klemelä and Mammen (2006), Liu, Yang and
Härdle (2013) for kernel-based two-step estimators in generalized additive
models, which also have the oracle property but are not as computation-
ally efficient as the two-step spline method. We next introduce the oracle
estimator and the proposed two-step estimator before we present the SCB.

3.2. Oracle estimator. In the following, we describe the oracle estimator
of αℓ1(x1). We rewrite model (4) as

µ(X,T) = g−1{η(X,T)}
(9)

=
∑

ℓ∈Î1

αℓ1(X1)Tℓ +
∑

ℓ∈Î1

{
αℓ0 +

∑

k≥2

αℓk(Xk)

}
Tℓ +

∑

ℓ/∈Î1

αℓ(X)Tℓ.

By assuming that αℓ0 and αℓk(Xk) for ℓ ∈ Î1, k ≥ 2 and αℓ(X) for ℓ /∈ Î1 are
known, estimation in (9) involves only the nonparametric functions αℓ1(X1)
of a scalar covariate X1. It will be shown in Theorem 2 that the estimator
achieves the univariate optimal convergence rate when the optimal order
for the number of knots is applied. We estimate α1(x1) = {αℓ1(x1), ℓ ∈ Î1}T
by minimizing the negative quasi-likelihood function as follows. Denote the
oracle estimator by α̂OR

ℓ1 (x1) =BS
1 (x1)

T
γ̂
OR
ℓ1 , where γ̂

OR
ℓ1 is defined directly

below, BS
1 (x1) = {BS

j,1(x1),1 ≤ j ≤ JS
n } where BS

j,1(x1) is the centered B-
spline function defined in the same way as Bj,1(x1) in Section 2, but with
NS =NS

n interior knots and JS
n =NS

n + q. Rates of increase for JS
n are de-

scribed in Assumptions 3 and 4 below. Let αℓ,−1(Xi) = αℓ0+
∑

k≥2αℓk(Xik).

Then γ̂
OR
,1 = {(γ̂OR

ℓ1 )T, ℓ ∈ Î1}T is obtained by minimizing the negative quasi-
likelihood

LOR
n (γ ,1) =

n∑

i=1

Q

[
g−1

{∑

ℓ∈Î1

BS
1 (Xi1)

T
γℓ1Tiℓ

(10)

+
∑

ℓ∈Î1

αℓ,−1(Xi)Tiℓ +
∑

ℓ/∈Î1

αℓ(Xi)Tiℓ

}
, Yi

]
,

where γ,1 = {(γℓ1)
T, ℓ ∈ Î1}T. Similarly, the oracle estimator of α0 = {αℓ0, ℓ ∈

Î1}T, which is denoted as α̂
OR
0 = {α̂OR

ℓ0 , ℓ ∈ Î1}T = {γ̂OR
ℓ0 , ℓ ∈ Î1}T, is ob-

tained by minimizing LOR
n (γ ,0) =

∑n
i=1Q[g−1{∑

ℓ∈Î1
γℓ0Tiℓ +

∑
ℓ∈Î1

αℓ,−0(Xi)Tiℓ +
∑

ℓ/∈Î1
αℓ(Xi)Tiℓ}, Yi], where γ ,0 = (γℓ0, ℓ ∈ Î1) and

αℓ,−0(Xi) =
∑d

k=1αℓk(Xik).
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3.3. Initial estimator. The oracle estimator is infeasible because it as-
sumes knowledge of the other functions. In order to obtain the two-step
estimators of αℓ1(x1) for ℓ ∈ Î1, we first need initial estimators for αℓ0

and αℓk(xk) for k ≥ 2 and ℓ ∈ Î1, denoted as α̂ini
ℓ0 = γ̂iniℓ0 and α̂ini

ℓk (xk) =

Bini
k (xk)

T
γ̂
ini
ℓk , where Bini

k (xk) = {Bini
j,k(xk) : 1 ≤ j ≤ J ini

n }T and Bini
j,k(xk) are

B-spline functions with the number of interior knots N ini
n and J ini

n =N ini
n +q.

Rates of increase for J ini
n are described in Assumptions 3 and 4 below. We

need an undersmoothed procedure in the first step, so that the approxima-
tion bias can be reduced, and the difference between the two-step and oracle
estimators is asymptotically negligible. We obtain γ̂

ini
Î1

= {(γ̂ ini
ℓ )T : ℓ ∈ Î1}T,

where γ̂
ini
ℓ = {γ̂ ini

ℓ0 , (γ̂
ini
ℓk )

T}T, by minimizing the negative quasi-likelihood∑n
i=1Q[g−1{

∑
ℓ∈Î1

B(Xi)
T
γℓTℓ}, Yi]. The adaptive group Lasso penalized

estimator γ̂
Î1
= {(γ̂ℓ)

T : ℓ ∈ Î1}T obtained in Section 2 can also be used as
the initial estimator. We, however, refit the model with the selected variables
and obtain the initial estimator γ̂ini

Î1
in order to improve estimation accuracy

in high-dimensional data settings.

3.4. Final estimator. In the second step, we construct the two-step es-
timator of αℓ1 for ℓ ∈ Î1. We replace αℓ0 and αℓk(Xk) by the initial estima-

tors α̂ini
ℓ0 and α̂ini

ℓk (Xk) for ℓ ∈ Î1 and k ≥ 2 and replace αℓ(X) for ℓ /∈ Î1 by
α̂ℓ(X) = 0. Let α̂ini

ℓ,−1(Xi) = α̂ini
ℓ0 +

∑
k≥2 α̂

ini
ℓk (Xik). Denote the two-step spline

estimator of αℓ1(x1) as α̂S
ℓ1(x1) = BS

1 (x1)
T
γ̂
S
ℓ1 with γ̂

S
,1 = {(γ̂S

ℓ1)
T, ℓ ∈ Î1}T

minimizing

LS
n(γ ,1) =

n∑

i=1

Q

[
g−1

{∑

ℓ∈Î1

BS
1 (Xi1)

T
γℓ1Tiℓ

(11)

+
∑

ℓ∈Î1

α̂ini
ℓ,−1(Xi)Tiℓ +

∑

ℓ/∈Î1

α̂ℓ(Xi)Tiℓ

}
, Yi

]
.

Then the two-step of αℓ0, denoted as α̂S
ℓ0 = γ̂Sℓ0, is obtained in the same way

as α̂OR
ℓ0 by replacing αℓ,0(Xi) with α̂ini

ℓ,0(Xi) =
∑d

k=1 α̂
ini
ℓk (Xik) for ℓ ∈ Î1 and

replacing αℓ(Xi) with α̂ℓ(Xi) = 0 for ℓ /∈ Î1. Let α̂
S
0 = {α̂S

ℓ0, ℓ ∈ Î1}T.

3.5. Asymptotic normality and uniform oracle efficiency. We now estab-
lish the asymptotic normality and uniform oracle efficiency for the oracle and
final estimators. Let Zijℓ,1 = BS

j,1(Xi1)Tiℓ and Zi,1 = (Zijℓ,1,1 ≤ j ≤ JS
n , ℓ ∈

Î1)
T. Let s∗ be the number of elements in Î1. By Theorem 1, P (s∗ = s)→ 1.

For simplicity of notation, denote σ2
i = σ2(Xi,Ti) and ηi = η(Xi,Ti). Define
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s∗ × s∗JS
n matrix BS(x1) as



BS

1,1(x1) · · · BS
JS
n ,1

(x1) 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 BS

1,1(x1) · · · BS
JS
n ,1

(x1)


 .

To establish the asymptotic distribution of the two-step estimator, in
addition to Assumptions 1 and 2 given in Section 2, we make the following
two assumptions on the number of basis functions JS

n and J ini
n :

Assumption 3. (i) s∗(JS
n )

2{n log(n)}−1 = o(1) and s∗(JS
n )

−r = o(1),
and (ii) n(logn)−1(JS

n J
ini
n )−1 →∞, as n→∞.

Assumption 4. (n/JS
n )

1/2(J ini
n )−r → 0, as n→∞.

First we describe the asymptotic normality of the oracle estimator α̂OR
ℓ1 (x1)

of αℓ1(x1). Let α̂
OR
1 (x1) = {α̂OR

ℓ1 (x1), ℓ ∈ Î1}T. Let b1(x1) =E{α̂OR
1 (x1)|X,T}

and bℓ1(x1) =E{α̂OR
ℓ1 (x1)|X,T}, for ℓ ∈ Î1, where (X,T) = (Xi,Ti)

n
i=1.

Theorem 2. Under conditions (C1)–(C5) and Assumption 3(i), for any
vector a ∈ Rs∗ with ‖a‖2 = 1, for any x1 ∈ [0,1], a

Tσ−1
n (x1){α̂OR

1 (x1) −
b1(x1)}→N(0,1), where

σ2
n(x1) =BS(x1)

[
n∑

i=1

Zi,1Z
T
i,1{ġ−1(ηi)}2

/
σ2
i

]−1

BS(x1)
T,(12)

where ġ−1(ηi) is the first-order derivative of g−1(ηi) with respect to ηi, and
∑

ℓ∈Î1

‖α̂OR
ℓ1 − bℓ1‖2 =Op(s

∗JS
n n

−1),
∑

ℓ∈I1

‖bℓ1 −αℓ1‖2 =Op{(s∗)2(JS
n )

−2r}.

Thus for ℓ ∈ Î1, σ
−1
n1 (x1){α̂OR

ℓ1 (x1)− bℓ1(x1)}→N(0,1), where

σ2
n1(x1) = e

T
ℓ σ

2
n(x1)eℓ,(13)

and eℓ is the s
∗-dimensional vector with the ℓth element 1 and other elements

0, and ‖α̂OR
0 −α0‖2 =Op(

√
s∗/n).

The next result shows the uniform oracle efficiency of the two-step esti-
mator that the difference between the two-step estimator α̂S

ℓ1(x1) and ora-
cle estimator α̂OR

ℓ1 (x1) is uniformly asymptotically negligible, and thus the
two-step estimator is oracle in the sense that it has the same asymptotic
distribution as the oracle estimator. Let α̂S

1 (x1) = {α̂S
ℓ1(x1), ℓ ∈ Î1}T.
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Theorem 3. Under conditions (C1)–(C5) in the Appendix and Assump-
tions 1–3,

sup
x1∈[0,1]

‖α̂S
1 (x1)− α̂OR

1 (x1)‖∞ =Op{(n−1 logn)1/2 + (J ini
n )−r},

‖α̂S
0 − α̂

OR
0 ‖2 = op(n

−1/2), and furthermore under Assumption 4,

sup
x1∈[0,1]

|aTσ−1
n (x1){α̂S

1 (x1)− α̂OR
1 (x1)}|= op(1),

for any vector a ∈Rs∗ with ‖a‖2 = 1 and σ2
n(x1) given in (12). Hence, for

any x1 ∈ [0,1], aTσ−1
n (x1){α̂S

1 (x1)− b1(x1)}→N(0,1).

Remark 2. Under Assumptions 1 and 2, by Theorem 1, with probability
approaching 1, s∗ = s, which is a fixed number. In the second step, by letting
JS
n ≍ n1/(2r+1), the nonparametric functions αℓ1 for ℓ ∈ Î1 are approximated

by spline functions with the optimal number of knots. By the conditions
that (n/JS

n )(J
ini
n )−1 → 0 and n(logn)−1(JS

n J
ini
n )−1 →∞ given in Assump-

tions 3 and 4, J ini
n needs to satisfy n1/(2r+1) ≪ J ini

n ≪ n2r/(2r+1)(logn)−1

where r≥ 1. By using the adaptive group lasso estimator as the initial esti-
mator, Assumption 1 requires that J ini

n ≪{n log(n)}1/2. Hence n1/(2r+1) ≪
J ini
n ≪ {n log(n)}1/2. We therefore can let J ini

n ≍ n(1+ϑ)/(2r+1), where ϑ is
any small positive number close to 0. This increase in the number of basis
functions ensures undersmoothing in the first step in order that the uniform
difference between the two-step and the oracle estimators become asymp-
totically negligible. Based on Assumptions 1 and 2, the tuning parameter
λn needs to satisfy n−1/2(J ini

n )1/2
√

log(pJ ini
n ){minℓ∈I2(wnℓ)}−1 ≪ λn ≪ 1.

Remark 3. The number of interior knots has the same order require-
ment as the number of basis functions. In the first step, with the un-
dersmoothing requirement as discussed in Remark 2, we let the number
of interior knots N ini = ⌊cn(1+0.01)/(2q+1)⌋, where c is a constant, by as-
suming that r = q. In the simulations, we let c = 2. In the second-step
estimation, we use BIC to select the number of knots NS , so the opti-
mal NS ranges in [⌊n1/(2q+1)⌋, ⌊2n1/(2q+1)⌋] by minimizing BIC: BIC(NS) =

2LS
n(γ̂

S
,1) + d(NS + q)log(n).

3.6. Simultaneous confidence bands. In this section, we propose a SCB
for αℓ1(x1) by studying the asymptotic behavior of the maximum of the
normalized deviation of the spline functional estimate. To construct asymp-
totic SCBs for αℓ1(x1) over the interval x1 ∈ [0,1] with confidence level
100(1 − α)%, α ∈ (0,1), we need to find two functions lℓn(x1) and uℓn(x1)
such that

lim
n→∞

P (lℓn(x1)≤ αℓ1(x1)≤ uℓn(x1) for all x1 ∈ [0,1]) = 1−α.(14)
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In practice, we consider a variant of (14) and construct SCBs over a subset
Sn,1 of [0,1] with Sn,1 becoming denser as n→∞. We, therefore, partition
[0,1] according to Ln equally spaced intervals based on 0< ξ0 < ξ1 < · · ·<
ξLn < ξLn+1 = 1 where Ln →∞ as n→∞. Let Sn,1 = (ξ0, . . . , ξLn). Define
dLn(α) = 1−{2 log(Ln +1)}−1[log{−(1/2) log(1− α)}+ (1/2){log log(Ln +
1) + log(4π)}], and QLn(α) = {2 log(Ln +1)}1/2dLn(α).

Theorem 4. Under conditions (C1)–(C5) in the Appendix, and Ln ≍
JS
n ≍ n1/(2r+1) and n1/(2r+1) ≪ J ini

n ≪ n2r/(2r+1){log(n)}−1, we have

lim
n→∞

P
{

sup
x1∈Sn,1

|σ−1
n1 (x1){α̂S

ℓ1(x1)−αℓ1(x1)}| ≤QLn(α)
}
= 1− α,

and thus an asymptotic 100(1− α)% confidence band for αℓ1(x1) over x1 ∈
Sn,1 is

α̂S
ℓ1(x1)± σn1(x1)QLn(α).(15)

Remark 4. Compared to the pointwise confidence intervals with width
2Z1−α/2σn(x1), the width of the confidence bands (15) is inflated by a rate

{2 log(Ln + 1)}1/2dLn(α)/Z1−α/2 , where Z1−α/2 is the cut-off point of the
100(1− α)th percentile of the standard normal.

3.7. Bootstrap smoothing for calculating the standard error. Theorem 4
establishes a thresholding value QLn(α) for the SCB. One critical question
is how to estimate the standard deviation σn1(x1) in order to construct the
SCB. We can use a sample estimate of σn1(x1) according to the asymptotic
formula given in (12), which may have approximation error and thus lead to
inaccurate results for inference. The bootstrap estimate of the standard de-
viation provides an alternative way. We here propose a bootstrap smoothed
confidence band by adopting the nonparametric bootstrap smoothing idea
from Efron (2014), which can eliminates discontinuities in jumpy estimates.
The procedure is described as follows.

Let D= {D1, . . . ,Dn} be the data we have, where Di = {Yi,Xi, (Tiℓ, ℓ ∈
Î1)}. Denote D

∗ = {D∗
1, . . . ,D

∗
n} as a nonparametric bootstrap sample from

{D1, . . . ,Dn}, and D
∗
(j) = {D∗

(j)1, . . . ,D
∗
(j)n} as the jth bootstrap sample in

B draws. Let α̂∗S
ℓ1,(j)(x1) be the two-step estimator of αℓ1(x1) by using the

dataD∗
(j). We first present an empirical standard deviation by the traditional

resampling method which is given as

σ̂ℓ1,B(x1) =

[
B∑

j=1

{α̂∗S
ℓ1,(j)(x1)− α̂∗S

ℓ1,·(x1)}2
/
(B − 1)

]1/2
,(16)
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where α̂∗S
ℓ1,·(x1) =

∑B
j=1 α̂

∗S
ℓ1,(j)(x1)/B. Then a 100(1−α)% unsmoothed boot-

strap SCB for αℓ1(x1) over x1 ∈ Sn,1 is given as

α̂S
ℓ1(x1)± σ̂ℓ1,B(x1)QLn(α).(17)

Another choice is the smoothed bootstrap SCB which eliminates disconti-
nuities in the estimates [Efron (2014)]. Let

α̃S
ℓ1(x1) =

B∑

j=1

α̂∗S
ℓ1,(j)(x1)/B

be the smoothed estimate of αℓ1(x1) obtained by averaging over the boot-
strap replications. Let C∗

(j)i =#{D∗
(j)i′ =Di} be the number of elements in

D
∗
(j)i′ equaling Di.

Proposition 1. At each point x1 ∈ Sn,1, the nonparametric delta-
method estimate of the standard deviation for the smoothed bootstrap statis-
tic α̃S

ℓ1(x1) is σ̃ℓ1(x1) = {∑n
i=1 cov

2
i (x1)}1/2, where covi(x1) = cov∗{C∗

(j)i,

α̂∗S
ℓ1,(j)(x1)} which is the bootstrap covariance between C∗

(j)i and α̂∗S
ℓ1,(j)(x1).

The proof of Proposition 1 essentially follows the same arguments as the
proof for Theorem 1 in Efron (2014). Based on Proposition 1, to construct
the smoothed bootstrap SCB, we use the nonparametric estimate of the
standard deviation given as

σ̃ℓ1,B(x1) =

{
n∑

i=1

ĉov2i,B(x1)

}1/2

,(18)

where

ĉovℓi,B(x1) =

B∑

j=1

(C∗
(j)i −C∗

·i)(α̂
∗S
ℓ1,(j)(x1)− α̂∗S

ℓ1,·(x1))/B

with C∗
·i =

∑B
j=1C

∗
(j)i/B. The 100(1 − α)% smoothed bootstrap SCB for

αℓ1(x1) over x1 ∈ Sn,1 is given as

α̃S
ℓ1(x1)± σ̃ℓ1,B(x1)QLn(α).(19)

4. A simulation study. In this section, we present a simulation study to
evaluate the finite sample performance of our proposed penalized estimation
procedure and the simultaneous confidence bands. More numerical studies
are located in the supplementary materials [Ma et al. (2015)].
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Example 1. In this example, we use 1286 SNPs located on the sixth
chromosome from the Framingham Heart Study to simulate the binary re-
sponse from the logistic model

logit{P (Yi = 1|Xi,Ti)}=
p∑

ℓ=1

αℓ(Xi)Tiℓ =

p∑

ℓ=1

{
αℓ0+

2∑

k=1

αℓk(Xik)

}
Tiℓ,(20)

with the four SNPs ss66063578, ss66236230, ss66194604 and ss66533844 se-
lected from the real data analysis in Section 5 as important covariates and
the other SNPs as unimportant covariates, so that s = 4 (the number of
important covariates), p= 1286 and the sample size n= 300. The three pos-
sible allele combinations are coded as 1, 0 and −1 for each SNP. The covari-
ates Xik, k = 1,2, are simulated environmental effects, which are generated
from independent uniform distributions on [0,1]. We generate the coefficient
functions as α10 = 0.5, α11(x1) = 4cos(2πx1), α12(x2) = 5{(2x2−1)2−1/3},
α20 = 0.5, α21(x1) = 6x1− 3, α22(x2) = 4{sin(2πx2)+ cos(2πx2)}, α30 = 0.5,
α31(x1) = 4sin(2πx1), α32(x2) = 6x2 − 3, α40 = 0.5, α41(x1) = 4cos(2πx1),
α42(x2) = 5{(2x2 − 1)2 − 1/3} and αℓ(Xi) = 0 for l = 5, . . . ,1286. We con-
ducted 500 replications for each simulation. We fit the data with the GACM
(20) by using the adaptive group lasso (AGL) and group lasso (GL). In the
literature, the generalized varying coefficient model [GVCM; Lian (2012)],
which considers one index variable in the coefficient function for each pre-
dictor Tiℓ, has been widely used to study nonlinear interactions. To apply
the GVCM method [Lian (2012)] in this setting, we first perform principal
component analysis (PCA) on Xi and then use the first principal compo-
nent as the index variable in the GVCM. Then we apply the AGL and GL
methods to the GVCM: logit{P (Yi = 1|Xi,Ti)}=

∑p
ℓ=1αℓ(Ui)Tiℓ, where Ui

is the first principal component obtained by PCA on Xi. Moreover, we also
fit the data with the parametric logistic regression by assuming linear coef-
ficient functions (3) with the AGL method. We also compare our proposed
method with the conventional screening method by parametric logistic re-
gression for Genome-Wide Association Studies [GWAS; Murcray, Lewinger
and Gauderman (2009)]. In the screening method, we fit a logistic model for
each SNP: logit{P (Yi = 1|Xi, Tiℓ)}= α0 +α

T
Xi + βℓTiℓ +

∑2
k=1 βℓkXikTiℓ,

for ℓ= 1, . . . ,1286. Then we conduct a likelihood ratio test for the genetic
and interaction effects of H0 : βℓ = βℓ1 = βℓ2 = βℓ3 = 0. Let α0 = 0.05 be the
overall type I error for the study and M = 1286 be the number of SNPs in
this study. We apply the multiple testing correction procedure for GWAS
with H0 rejected when the p-value< α0/Meff , where Meff is the Cheverud–
Nyholt estimate of the effective number of tests [Cheverud (2001), Nyholt

(2004)] calculated by Meff = 1 +M−1
∑M

j=1

∑M
k=1(1− r2jk) and rjk are the

correlation coefficients of the SNPs, and we obtain Meff = 1275.65.
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Table 1

Variable selection and estimation results by the adaptive group lasso and the group lasso
with the GACM and GVCM, respectively, and parametric logistic regression with adaptive
group lasso and screening methods based on 500 replications. The columns of C, O and I
show the percentage of correct-fitting, over-fitting and incorrect-fitting. The columns TP,

FP and MR show true positives, false positives and model errors, respectively

C O I TP FP MR

GACM AGL 0.410 0.460 0.130 3.860 0.870 0.059
GL 0.140 0.764 0.096 3.904 2.540 0.083

GVCM AGL 0.030 0.000 0.970 1.636 5.685 0.142
GL 0.060 0.000 0.940 2.076 20.670 0.120

Logistic regression AGL 0.000 0.000 1.000 1.872 1.174 0.159
Screening 0.000 0.000 1.000 1.056 0.786 0.141

Table 1 presents the percentages of correct-fitting (C) (exactly the impor-
tant covariates are selected), over-fitting (O) (both the important covariates
and some unimportant covariates are selected) and incorrect-fitting (I) (some
of the important covariates are not selected), the average true positives (TP),
that is, the average number of selected covariates among the important co-
variates, the average false positives (FP), that is, the average number of se-
lected covariates among the unimportant covariates, and the average model
errors (MR), the latter defined as

∑n
i=1{µ̂i(Xi,Ti)−µi(Xi,Ti)}2/n, where

µ̂i(Xi,Ti) and µi(Xi,Ti) are the estimated and true conditional means for
Yi, respectively. We see that by fitting the proposed GACM, the GL method
has larger percentage of over-fitting as well as larger average false posi-
tives than the AGL methods. The AGL improves the correct-fitting per-
centage by 26%. As a result, the AGL reduces the model fitting error by
(0.083− 0.059)/0.059 = 40.7% compared to the GL method. Moreover, both
the logistic model and the GVCM fail to identify those important covariates
with incorrect-fitting percentage close to or being 1. Furthermore, by using
the screening method with logistic regression, the average true positive is
1.056, which is much less than 4 (the number of those important SNPs).
This further illustrates that the traditional screening method is not an ef-
fective tool to identify important genetic factors in this context. In addition,
we observe that the results for the AGL method in Table 1 are comparable
to the results in Table S.1 of Example 2 (in the supplementary materials) at
p= 1000 with the simulated SNPs in terms of having similar correct-fitting
percentages and MR values.

Next, we investigate the empirical coverage rates of the unsmoothed and
smoothed SCBs given in (17) and (19). To calculate the unsmoothed and
smoothed bootstrap standard deviations (16) and (18), we use B = 500 boot-
strap replications. The confidence bands are constructed at Ln = 20 equally
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Table 2

The empirical coverage rates (cov) and the sample average of median and mean of the
standard deviations (sd.median and sd.mean) for the unsmoothed SCB (17) and

smoothed SCB (19) for the coefficient functions αℓ1(x1) for ℓ= 1,2,3,4

Unsmoothed bootstrap Smoothed bootstrap

cov sd.median sd.mean cov sd.median sd.mean

α11 0.610 0.689 0.809 0.818 0.735 0.982
α21 0.628 0.563 0.725 0.846 0.666 0.932
α31 0.636 0.736 0.832 0.869 0.837 1.053
α41 0.646 0.768 0.843 0.882 0.891 1.064

spaced points. At 95% confidence level, Table 2 reports the empirical cov-
erage rates (cov) and the sample averages of median and mean standard
deviations (sd.median and sd.mean), respectively, for the unsmoothed SCB
(17) and smoothed SCB (19) for coefficient functions αℓ1(x1), ℓ= 1,2,3,4.
We see that the smoothed bootstrap method leads to better performance,
having empirical coverage rates closer to the nominal confidence level 0.95.

5. Data application. We illustrate our method via analysis of the Fram-
ingham Heart Study [Dawber, Meadors and Moore (1951)] to investigate the
effects of G × E interactions on obesity. People are defined as obese when
their body mass index (BMI) is 30 or greater: this is the definition of being
obese made by the U.S. Centers for Disease Control and Prevention; see
http://www.cdc.gov/obesity/adult/defining.html. We defined the re-
sponse variable to be Y = 1 for BMI≥ 30; and Y = 0 for BMI< 30. We use
X1 = sleeping hours per day; X2 = activity hours per day; andX3 = diastolic
blood pressure as the environmental factors, and use single nucleotide poly-
morphisms (SNPs) located in the sixth chromosome as the genetic factors.
The three possible allele combinations are coded as 1, 0 and −1. As in the
simulation, we thus are fitting a multiplicative risk model in the SNPs. For
details on genotyping, see http://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?studyid=phs000007.v3.p2. A total of 1286 SNPs re-
main in our analysis after eliminating SNPs with minor allele frequency
<0.05, those with departure from Hardy–Weinberg equilibrium and those
having correlation coefficient with the response between −0.1 and 0.1. We
have n = 300 individuals left in our study after deleting observations with
missing values.

To see possible nonlinear main effects of the environmental factors, we
first fit a generalized additive model by using X1, X2 and X3 as predictors

http://www.cdc.gov/obesity/adult/defining.html
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?studyid=phs000007.v3.p2
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?studyid=phs000007.v3.p2
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such that

E(Yi|Xi,Ti) = g−1{η(Xi)} with η(Xi) =m0 +
3∑

k=1

mk(Xik).(21)

Figure S.1 given in the supplementary material [Ma et al. (2015)] depicts
the plots of m̂k(·) for k = 1,2,3 by one-step cubic spline estimation. Clearly
the estimate of each nonparametric function has a nonlinear pattern. We
refer to Section S.2 for the detailed description of this figure. Based on the
plots shown in Figure S.1, we fit the GACM model

η(Xi,Ti) =
1287∑

ℓ=1

{
αℓ0 +

3∑

k=1

αℓk(Xik)

}
Tiℓ,(22)

where Ti = (Ti1, Ti2, . . . , Ti1287)
T with Ti1 = 1, and Tiℓ are the SNP covari-

ates for ℓ = 2, . . . ,1287. The nonparametric function αℓk(·) is estimated
by cubic splines, and the number of interior knots for each step is se-
lected based on the criterion described in Section 2.4. We select variables
in model (22) by the proposed adaptive group lasso (AGL) and the group
lasso (GL). To compare the proposed model with linear models, we per-
form the group lasso by assuming linear interaction effects (Linear) such
that αℓ(Xi) = αℓ0 +

∑3
k=1 βℓkXik, and we also perform the lasso by assum-

ing no interaction effects (No interaction) such that αℓ(Xi) = αℓ0. We also
apply the screening method with parametric logistic regression (Screening)
as described in Example 2. Table 3 reports the variable selection results in
these five scenarios. After model selection, we calculate the estimated leave-
one-out cross-validation prediction error (CVPE) for the model with the
selected variables as shown in the last row of Table 3. Among the selected
SNPs by the AGL method, two SNPs, rs4714924 and rs6543930, have been
scientifically confirmed by Randall et al. (2013) to have strong associations
with obesity. Moreover, compared to the linear, no interaction and screen-
ing methods, our proposed AGL with GACM method enables us to identify
more genetic factors, which may be important to the response but missed
out by other methods. As a result, it has the smallest CVPE (0.078), so
that it significantly improves model prediction compared to other methods.
We also see that the logistic model that completely ignores interactions has
the largest CVPE (0.152). The screening method has the second largest
CVPE (0.149), which is larger than that of the penalization method (0.124)
obtained by fitting the same logistic regression model but including interac-
tion considered. This result demonstrates that the screening method is not
as effective as the penalization method for analysis of this data set, a result
which also agrees with our simulations.
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Table 3

Variable selection results for the group lasso (GL) and the adaptive group lasso (AGL) in
model (22), the group lasso by assuming linear interaction effects (linear), the lasso by
assuming no interaction effects (no interaction) and the screening method (screening).

The symbol
√

indicates that the SNP was selected into the model. The last row shows the
cross validation prediction errors (CVPE)

SNPs GL AGL Linear No interaction Screening

rs9296244
√ √

rs6910353
√ √

rs3130813
√ √

rs9353447
√ √

rs4714924
√ √ √

rs242263
√ √ √ √

rs282123
√

rs282128
√ √

rs6929006
√

rs9353711
√

rs12199154
√ √

rs2277114
√

rs749517
√

rs729888
√

rs203139
√

rs6914589
√ √

rs6543930
√ √

CVPE 0.099 0.078 0.124 0.152 0.149

Next we fit the final GACM selected variables from the AGL procedure
as

η(Xi,Ti) =

10∑

ℓ=1

{
αℓ0 +

3∑

k=1

αℓk(Xik)

}
Tiℓ.(23)

To illustrate the main effects of the environmental factors, Figure 2 plots
the smoothed two-step estimated functions α̃S

1k(·) of the functions αS
1k(·), for

k = 1,2,3, and the associated 95% smoothed SCBs (upper and lower solid
lines). The plots of the functional estimates have the same nonlinear change
patterns as the corresponding plots in Figure S.1, although because of the
addition of the SCBs, the scale of the plot has changed.

To illustrate the effects of the genetic factors changing with the envi-
ronmental factors, in Figure 3 we plot the smoothed two-step estimated
functions α̃S

6k(·) and the associated 95% smoothed SCBs of the coefficient
functions αS

6k(·) for the SNP rs242263. To further demonstrate how the prob-
ability of developing obesity changes with the environmental factors for each
category of SNP rs242263, Figure 4 plots the estimated conditional probabil-
ity of obesity against each environmental factor by letting Tiℓ = 0 for ℓ 6= 6.
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Fig. 2. Plots of the smoothed two-step estimated functions α̃S
1k(·) for k = 1,2,3 and the

associated 95% SCBs based on model (23).

Letting A be the minor allele, the curves are for aa (solid line), Aa (dashed
line) and AA (dotted line). Figure 3 indicates different changing patterns
of the interaction effects under different environments. For example, sleep-
ing hours seem to have an overall more significant interaction effect with
this particular SNP than the other two variables. The effect of this SNP
changes from positive to negative and then to positive again as the sleeping
hours increase. The coefficient functions of the SNP have an increasing pat-
tern along with the activity hours and diastolic blood pressure, respectively.
From Figure 4, we observe that there are stronger differences among the
levels AA, Aa, and aa of SNP rs242263 for both large and small values of
the environmental factors.There are other interesting results worth further
study. For example, in the 2–6 hours per day sleeping range, the AA group
(dotted lines) have much higher rates of obesity than the aa group (solid
line), but the opposite occurs in the 6–9 hour range. For those with low
amounts of activity per day, again the AA group is more obese than the aa
group, while when activity increases, the AA group is less obese than the
aa group. A similar noticeable difference occurs between the <60 diastolic
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Fig. 3. Plots of the smoothed two-step estimated functions α̃S
5k(·) for k = 1,2,3 and the

associated 95% SCBs based on model (23).

blood pressure group, those who are hypotensive, and the >90 group, those
who are hypertensive, although there are few subjects in the former group.

6. Discussions. The generalized additive coefficient model (GACM) pro-
posed by Xue and Yang (2006) and Xue and Liang (2010) has been demon-
strated to be a powerful tool for studying nonlinear interaction effects of
variables. To promote the use of the GACM in modern data applications
such as gene-environment (G × E) interaction effects in GWAS, we have
proposed estimation and inference procedures for the GACM when the di-
mension of the variables is high. Specifically, we have devised a groupwise
penalization method in the GACM for simultaneous model selection and
estimation. We showed by numerical studies that we can effectively iden-
tify important genetic factors by using the proposed nonparametric model
while traditional generalized parametric models such as logistic regression
model fails to do so when nonlinear interactions exist. Moreover, by com-
paring with the conventional screening method with logistic regression as
commonly used in the GWAS community, our proposed groupwise penaliza-
tion method with the GACM has been demonstrated to be more effective
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Fig. 4. Plots of the estimated conditional probability of obesity against each environmen-
tal factor by letting Tiℓ = 0 for ℓ 6= 5. With A being the minor allele, the curves are aa
(solid line), Aa (dashed line) and AA (dotted line), based on model (23).

for variable selection and model estimation. After identifying those impor-

tant covariates, we have further constructed simultaneous confidence bands

for the nonzero coefficient functions based on a refined two-step estima-

tor. We estimate the standard deviation of the functional estimator by a

smoothed bootstrap method as proposed in Efron (2014). The method was

shown to have good numerical performance by reducing variability as well

as improving the empirical coverage rate of the proposed simultaneous con-

fidence bands. Our methods can be extended to longitudinal data settings

through marginal models or mixed-effects models. More work, however, is

needed to understand the properties of the estimators in such new settings.

Moreover, extending this work to the setting with the dimensions for both

genetic and environmental factors growing with the sample size can be a

future project to be considered. Some associated theoretical properties with

respect to model selection and estimation as well as inference need to be

carefully investigated.
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APPENDIX

Denote the space of the qth order smooth functions as C(q)([0,1]) =
{φ|φ(q) ∈ C[0,1]}. For any s× s symmetric matrix A, denote its Lq norm
as ‖A‖q = maxς∈Rs,‖ς‖2=1 ‖Aς‖q . Let ‖A‖∞ = max1≤i≤s

∑s
j=1 |aij |. For a

vector a, let ‖a‖∞ =max1≤i≤s |ai|.
Let C0,1(Xw) be the space of Lipschitz continuous functions on Xw, that

is,

C0,1(Xw) =

{
ϕ : ‖ϕ‖0,1 = sup

w 6=w′,w,w′∈Xw

|ϕ(w)− ϕ(w′)|
|w−w′| <+∞

}
,

in which ‖ϕ‖0,1 is the C0,1-norm of ϕ. Denote qj(η, y) = ∂jQ{g−1(η), y}/∂ηj ,
so that

q1(η, y) =
∂

∂η
Q{g−1(η), y}=−{y− g−1(η)}ρ1(η),

q2(η, y) =
∂2

∂η2
Q{g−1(η), y}= ρ2(η)−{y− g−1(η)}ρ′1(η),

where ρj(η) = {ġ−1(η)}j/V {g−1(η)}.

A.1. Assumptions. Throughout the paper, we assume the following reg-
ularity conditions:

(C1) The joint density of X, denoted by f(x), is absolutely continuous,
and there exist constants 0< cf ≤Cf <∞, such that cf ≤min

x∈[0,1]df(x)≤
max

x∈[0,1]d f(x)≤Cf .

(C2) The function V is twice continuously differentiable, and the link
function g is three times continuously differentiable. The function q2(η, y)<
0 for η ∈R and y in the range of the response variable.

(C3) For 1 ≤ ℓ ≤ p, 1 ≤ k ≤ d, α
(r−1)
ℓk (xk) ∈ C0,1[0,1], for given integer

r ≥ 1. The spline order satisfies q ≥ r.
(C4) Let εi = Yi − µ(Xi,Ti),1 ≤ i ≤ n. The random variables ε1, . . . , εn

are i.i.d. with E(εi) = 0 and var(εi|Xi,Ti) = σ2(Xi,Ti). Furthermore, their
tail probabilities satisfy P (|εi|> x)<K exp(−Cx2), i= 1, . . . , n, for all x≥ 0
and for some positive constants C and K.

(C5) The eigenvalues of E(TI1T
T
I1
|X= x), where TI1 = (Tℓ, ℓ ∈ I1)

T, are

uniformly bounded away from 0 and ∞ for all x ∈ [0,1]d. There exist con-
stants 0< c1 <C1 <∞, such that c1 ≤E(T 2

ℓ |X= x)≤C1, for all x ∈ [0,1]d,
ℓ ∈ I2.

Conditions (C1)–(C5) are standard conditions for nonparametric estima-
tion. Condition (C1) is the same as condition (C1) in Xue and Yang (2006)
and condition (C5) in Xue and Liang (2010). The first condition in (C2)
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gives the assumptions on V and the link function g, which can be found in
condition (E) of Lam and Fan (2008). The second condition in (C2) guar-
antees that the negative quasi-likelihood function Q{g−1(η), y} is convex in
η ∈R, which is also given in condition (D) of Lam and Fan (2008) and (a)
of condition 1 in Carroll et al. (1997). Condition (C3) is typical for polyno-
mial spline smoothing; see the same condition given in Section 5.2 of Huang
(2003). Condition (C4) is the same as assumption (A2) given in Huang,
Horowitz and Wei (2010). Condition (C5) is given in condition (C5) of Xue
and Liang (2010) and condition (A5) in Ma and Yang (2011b).

A.2. Preliminary lemmas. Define α0
ℓ (x) =

∑d
k=1α

0
ℓk(xk) = B(x)Tγℓ,

where α0
ℓk(xk) is defined in (6). Let γI1 = (γℓ : ℓ ∈ I1)

T. To prove Theorem 1,
we next define the oracle estimator of γI1 by minimizing the penalized neg-
ative quasi-likelihood with all irrelevant predictors eliminated as such

Ln(γI1) =
n∑

i=1

Q

[
g−1

{∑

ℓ∈I1

B(Xi)
T
γℓTℓ

}
, Yi

]
+ nλn

∑

ℓ∈I1

wnℓ‖γℓ‖2,(24)

so that γ̂
0
I1 = (γ̂0

ℓ : ℓ ∈ I1)
T = argminγI1

Ln(γI1). Define γ̂
0
I2 = (γ̂0

ℓ : ℓ ∈ I2)
T

with γ̂
0
ℓ ≡ 0dJn+1 for ℓ ∈ I2, where 0dJn+1 is a (dJn + 1)-dimensional zero

vector. We next present several lemmas, whose detailed proofs are given in
the online supplementary materials [Ma et al. (2015)]. Lemma A.1 is used
for the proof of Theorem 1, while Lemma A.2 is needed in the proof of
Theorem 3.

Lemma A.1. Under the conditions of Theorem 1, one has

‖γ̂0
I1 − γI1‖2 =Op(λn‖wn,I1‖+ n−1/2J1/2

n + J−r
n ),(25)

and as n→∞,

P{γ̂ = (γ̂0T
I1
, γ̂0T

I2 )
T}→ 1.(26)

Lemma A.2. Under conditions (C1)–(C5) and Assumptions 1–3,

‖γ̂S
,1 − γ̂

OR
,1 ‖∞ =Op

(√
logn/(JS

n n) + (JS
n )

−1/2(J ini
n )−r

)
.(27)

A.3. Proof of Theorem 1. By (25) and (26),
∑

ℓ∈I1

‖α̂ℓ −αℓ‖ ≍ ‖γ̂I1 − γI1‖2 =Op(λn‖wn,I1‖+ n−1/2J1/2
n + J−r

n ),

P (‖α̂ℓ‖> 0, ℓ ∈ I1 and ‖α̂ℓ‖= 0, ℓ ∈ I2)→ 1.
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A.4. Proof of Theorem 2. Let γ ,1 = (γℓ1, ℓ ∈ Î1)
T, where γℓ1 is defined

in (7). By Taylor’s expansion, from (10), one has

γ̂
OR
,1 − γ ,1 =

[
n∑

i=1

Zi,1Z
T
i,1{ġ−1(η∗i )}2

/
σ2
i

]−1

×
[

n∑

i=1

Zi,1{Yi − g−1(η0i )}(ġ−1(η0i )/σ
2
i )

]
,

where η0i =
∑p

ℓ=1{αℓ0 +
∑d

k=2αℓk(Xik)}Tiℓ +
∑p

ℓ=1B
S(x1)

T
γℓ1Tiℓ and

η∗i =

p∑

ℓ=1

{
αℓ0 +

d∑

k=2

αℓk(Xik)

}
Tiℓ +

p∑

ℓ=1

BS(x1)
T
γ
∗
ℓ1Tiℓ,

where γ
∗
,1 = (γ∗

ℓ1, ℓ ∈ Î1)
T ∈ (γ ,1, γ̂

OR
,1 ). Following similar reasoning as the

proofs for (25), we have ‖γ̂OR
,1 − γ,1‖2 = op(1). Then γ̂

OR
,1 − γ ,1 = (γ̂OR

,1e +

γ̂
OR
,1µ ) + op(1), where

γ̂
OR
,1e =

[
n∑

i=1

Zi,1Z
T
i,1{ġ−1(ηi)}2

/
σ2
i

]−1[ n∑

i=1

Zi,1εi{ġ−1(ηi)/σ
2
i }
]
,

γ̂
OR
,1µ =

[
n∑

i=1

Zi,1Z
T
i,1{ġ−1(ηi)}2

/
σ2
i

]−1

(28)

×
[

n∑

i=1

Zi,1{g−1(ηi)− g−1(η0i )}{ġ−1(ηi)/σ
2
i }
]
.

Therefore, var(γ̂OR
,1e |X,T) = [

∑n
i=1Zi,1Z

T
i,1{ġ−1(ηi)}2/σ2

i ]
−1. By Theorem 5.4.2

of DeVore and Lorentz (1993), for sufficiently large n, there exist con-
stants 0 < cB ≤ CB < ∞, such that cBIJS

n×JS
n
≤ E(BS

1 (Xi1)B
S
1 (Xi1)

T) ≤
CBIJS

n×JS
n
. By condition (C5), for n large enough, there are constants 0<

CT ,C
′ <∞, such that

E[Zi,1Z
T
i,1{ġ−1(ηi)}2/σ2

i ]

≤C ′E[{BS
1 (Xi1)B

S
1 (Xi1)

T} ⊗ {E(TℓTℓ′ |X)}ℓ,ℓ′∈Î1 ]

≤CCT s
∗E{BS

1 (Xi1)B
S
1 (Xi1)

T} ⊗ Is∗×s∗ ≤C ′CTCBs
∗
IJS

n×JS
n
⊗ Is∗×s∗

=Cs∗IJS
n s∗×JS

n s∗ ,

where C = C ′CTCB . Similarly, we have E[Zi,1Z
T
i,1{ġ−1(ηi)}2/σ2

i ] ≥
cIJS

n s∗×JS
n s∗ for some constant 0< c <∞. Thus, following the same reason-

ing as the proof for (S.5) in the supplementary materials [Ma et al. (2015)],
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we have with probability 1, for n→∞,

C−1(s∗)−1n−1
IJS

n s∗×JS
n s∗ ≤

[
n∑

i=1

Zi,1Z
T
i,1{ġ−1(ηi)}2

/
σ2
i

]−1

(29)
≤ c−1n−1

IJS
n s∗×JS

n s∗.

By the Lindeberg central limit theorem, it can be proved that

a
Tσ−1

n (x1){BS(x1)γ̂
OR
,1e }→N(0,1),(30)

for any a ∈Rs∗ with ‖a‖2 = 1. Since a
Tσ−1

n (x1){α̂OR
1 (x1)− b1(x1)}= a

T ×
σ−1
n (x1){BS(x1)γ̂

OR
,1e }+ op(1), by (30) and Slutsky’s theorem, we have

a
Tσ−1

n (x1){α̂OR
1 (x1)− b1(x1)}→N(0,1).(31)

By (28) and (29), with probability approaching 1,
∑

ℓ∈I1

‖α̂OR
ℓ1 − bℓ1‖2 ≍ ‖γ̂OR

,1e ‖22

≤ c−2n−2

[
n∑

i=1

εiZ
T
i,1(ġ

−1(ηi)/σ
2
i )

][
n∑

i=1

Zi,1εi(ġ
−1(ηi)/σ

2
i )

]

≍ c−2n−1E[ZT
i,1Zi,1{ġ−1(ηi)}2/σ2

i ]≍ s∗JS
n n

−1;

‖aT(α̂OR
1 − b1)‖2 ≤ Ca‖γ̂OR

,1e ‖22 ≤Cac
−1n−2

(
n∑

i=1

εiZ
T
i,1

)(
n∑

i=1

Zi,1εi

)

≍ Cac
−1n−1E(ZT

i,1Zi,1)≍ s∗JS
n n

−1.

Since supx1∈[0,1] |αℓ1(x1)−BS
1 (x1)

T
γℓ1|=O{(JS

n )
−r}, it can be proved that

‖aTγ̂OR
,1µ‖ ≤ ‖γ̂OR

,1µ‖2 =Op{(s∗)1/2(JS
n )

−r}, and ‖aT(b1 −α0
1)‖ ≍ ‖aTγ̂OR

,1µ2‖=
Op{(s∗)1/2(JS

n )
−r}. Hence

‖aT(b1 −α1)‖ ≤ ‖aT(b1 −α0
1)‖+ ‖aT(α0

1 −α1)‖=Op{s∗(JS
n )

−r}.
By (31), {eTℓ σ2

n(x1)eℓ}−1/2{α̂OR
ℓ1 (x1) − bℓ1} → N(0,1), and supℓ∈Î1 |α̂

OR
ℓ0 −

αℓ0|=Op(n
−1/2) follows from the central limit theorem.

A.5. Proof of Theorem 3. By (27) in Lemma A.2,

sup
x1∈[0,1]

‖α̂S
1 (x1)− α̂OR

1 (x1)‖∞ ≤ sup
x1∈[0,1]

JS
n∑

j=1

|BS
j,1(x1)|‖γ̂S

,1 − γ̂
OR
,1 ‖∞.

The right-hand side is bounded by Op{(n−1 logn)1/2 + (J ini
n )−r}. ‖α̂S

0 −
α̂

OR
0 ‖2 = op(n

−1/2) can be proved following the same procedure and thus
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omitted. By (29), with probability approaching 1, for large enough n, for
any x1 ∈ [0,1], and a ∈Rs∗ with ‖a‖2 = 1, one has

a
Tσ2

n(x1)a≤ c−1
Z n−1

a
TBS(x1)B

S(x1)
T
a≤ c−1JS

n n
−1

a
T
a,

a
Tσ2

n(x1)a≥ C−1
Z (s∗)−1n−1

a
TBS(x1)B

S(x1)
T
a≥C−1JS

n (s
∗)−1n−1

a
T
a,

where σ2
n(x1) is defined in (12). Thus

sup
x1∈[0,1]

|aTσ−1
n (x1){α̂S

1 (x1)− α̂OR
1 (x1)}|

≤ sup
x1∈[0,1]

‖σ−1
n (x1)‖2‖α̂S

1 (x1)− α̂OR
1 (x1)‖2

=Op[s
∗{(logn/JS

n )
1/2 + (n/JS

n )
1/2(J ini

n )−r}] = op(1).

A.6. Proof of Theorem 4. Using the strong approximation lemma given
in Theorem 2.6.7 of Csörgő and Révész (1981), we can prove by the same
procedure as Lemma A.7 in Ma, Yang and Carroll (2012) that

sup
x1∈[0,1]

|α̂OR
ℓ1 (x1)− bℓ1(x1)− α̂0

ℓ1,ε(x1)|= oa.s.(n
t)(32)

for some t <−r/(2r+ 1)< 0, where α̂0
ℓ1,ε(x1) is

e
T
ℓ B

S(x1)

[
n∑

i=1

Zi,1Z
T
i,1{ġ−1(ηi)}2

/
σ2
i

]−1[ n∑

i=1

Zi,1ei{ġ−1(ηi)/σ
2
i }
]
,

and ei,1 ≤ i ≤ n, are i.i.d. N(0,1) independent of Zi,1. For σ2
n(x1) defined

in (12) and σn1(x1)≍ (JS
n /n)

1/2{1+ op(1)} uniformly in x1 ∈ [0,1]. By (32),

JS
n ≍ n1/(2r+1) and t <−r/(2r+ 1)< 0, we have

sup
x1∈[0,1]

|{log(Ln + 1)}−1/2σ−1
n1 (x1){α̂OR

ℓ1 (x1)− bℓ1(x1)− α̂0
ℓ1,ε(x1)}|

= oa.s.({log(Ln +1)}−1/2(n/JS
n )

1/2nt)(33)

= oa.s.({log(Ln +1)}−1/2nr/(2r+1)−t) = oa.s.(1).

Define η(x1) = σ−1
n1 (x1)α̂

0
ℓ1,ε(x1). It is apparent that L{η(ξJ)|Zi,1,1 ≤ i ≤

n}=N(0,1), so L{η(ξJ)}=N(0,1) for 0≤ J ≤ Ln. Moreover, the eigenval-
ues of (EZi,1Z

T
i,1)

−1 ≍ JS
n . Then with probability approaching 1, for J 6= J ′,

|E{η(ξJ)η(ξJ ′)}| ≍ (n/JS
n )n

−1|eTℓ BS(ξJ)(EZi,1Z
T
i,1)

−1BS(ξJ ′)Teℓ|

≍ |eTℓ BS(ξJ)B
S(ξJ ′)Teℓ|=

JS
n∑

j=1

BS
j,1(ξJ)B

S
j,1(ξJ ′)
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and
∑JS

n

j=1B
S
j,1(ξJ)B

S
j,1(ξJ ′)≍C for a constant 0<C <∞ when |jJ − jJ ′ | ≤

(q − 1) and
∑JS

n

j=1B
S
j,1(ξJ)B

S
j,1(ξJ ′) = 0 when |jJ − jJ ′ | > (q − 1), in which

jJ denotes the index of the knot closest to ξJ from the left. Therefore,
by Ln ≍ JS

n , there exist constants 0 < C1 <∞ and 0 < C2 <∞ such that

with probability approaching 1, for J 6= J ′, |E{η(ξJ)η(ξJ ′)}| ≤ C
−|jJ−jJ′ |
1 ≤

C
−|J−J ′|
2 . By Lemma A1 given in Ma and Yang (2011a), we have

lim
n→∞

P
{

sup
0≤J≤Ln

|{2 log(Ln +1)}−1/2η(ξJ )| ≤ dNn(α)
}
= 1− α,

and hence

lim
n→∞

P
{

sup
x1∈Sn,1

|{2 log(Ln+1)}−1/2σ−1
n1 (x1)α̂

0
ℓ1,ε(x1)| ≤ dNn(α)

}
= 1−α.

(34)
Furthermore, according to the result on page 149 of de Boor (2001), we have

sup
x1∈[0,1]

|{log(Ln +1)}−1/2σ−1
n1 (x1){bℓ1(x1)− αℓ1(x1)}|

(35)
=Op({log(Ln +1)}−1/2(n/JS

n )
1/2(JS

n )
−r) = op(1).

Moreover, α̂OR
ℓ1 (x1)−αℓ1(x1) = α̂0

ℓ1,ε(x1)+{α̂OR
ℓ1 (x1)− bℓ1(x1)− α̂0

ℓ1,ε(x1)}+
{bℓ1(x1)−αℓ1(x1)}. Hence by (33) and (35), we have

lim
n→∞

P
{

sup
x1∈Sn,1

{log(Ln +1)}−1/2σ−1
n1 (x1)|α̂OR

ℓ1 (x1)−αℓ1(x1)| ≤ dNn(α)
}

= lim
n→∞

P
{

sup
x1∈Sn,1

{log(Ln +1)}−1/2σ−1
n1 (x1)|α̂0

ℓ1,ε(x1)| ≤ dNn(α)
}

(36)

= 1−α,

where the last step follows from (34). By the oracle property given in The-
orem 3, and JS

n ≍ n1/(2r+1) and n1/(2r+1) ≪ J ini
n , we have

sup
x1∈[0,1]

{log(Ln +1)}−1/2σ−1
n1 (x1)|α̂S

ℓ1(x1)− α̂OR
ℓ1 (x1)|

(37)
=Op[log(Ln +1)−1/2(n/JS

n )
1/2(n−1 logn)1/2 + (J ini

n )−r] = op(1).

Therefore, by (36) and (37), we have

lim
n→∞

P
{

sup
x1∈Sn,1

{log(Ln+1)}−1/2σ−1
n1 (x1)|α̂S

ℓ1(x1)−αℓ1(x1)| ≤ dNn(α)
}
= 1−α,

and hence the result in Theorem 4 is proved.
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Meier, L. and Bühlmann, P. (2007). Smoothing l1-penalized estimators for high-
dimensional time-course data. Electron. J. Stat. 1 597–615. MR2369027
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