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ARTICLE

Identifying noncoding risk variants using disease-
relevant gene regulatory networks
Long Gao1, Yasin Uzun 2,3, Peng Gao2,3, Bing He2,3, Xiaoke Ma4, Jiahui Wang5, Shizhong Han6 &

Kai Tan1,2,3,7,8

Identifying noncoding risk variants remains a challenging task. Because noncoding variants

exert their effects in the context of a gene regulatory network (GRN), we hypothesize that

explicit use of disease-relevant GRNs can significantly improve the inference accuracy of

noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated

Networks (ARVIN), a general computational framework for predicting causal noncoding

variants. It employs a set of novel regulatory network-based features, combined with

sequence-based features to infer noncoding risk variants. Using known causal variants in

gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-

of-the-art methods that use sequence-based features alone. Additional experimental vali-

dation using reporter assay further demonstrates the accuracy of ARVIN. Application of

ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork

perturbed by the combinatorial action of the entire set of risk noncoding mutations.
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Genome-wide association studies (GWASs) and whole-
genome sequencing have revealed thousands of sequence
variants associated with different human diseases/traits1–

3. The vast majority of identified variants are located outside of
coding sequences, making direct interpretation of their functional
effects challenging. For the small number of cases where the
causal variants have been experimentally validated, they have
been shown to perturb binding sites of transcription factors, local
chromatin structure or co-factor recruitment, ultimately resulting
in changes of transcriptional output of the target gene(s)4–6.

Among the different classes of noncoding regulatory sequen-
ces, transcriptional enhancers represent the primary basis for
differential gene expression, with many human diseases resulting
from altered enhancer action5,7,8. Numerous recent studies have
uncovered a large number of putative enhancers in a diverse array
of human cells and tissues9–11. Overlapping the catalog of genetic
variants with known enhancers has revealed an enrichment of
disease-associated variants in tissue-specific enhancers12,13,
emphasizing the importance of knowledge about tissue-specific
cis-regulatory sequences for identifying causal variants. In the
following, we term single nucleotide polymorphisms (SNPs)
located in enhancers eSNPs. A number of computational methods
have been developed to predict causal noncoding variants14–20.
Conceptually, these methods operate by annotating genetic var-
iants using a catalog of cis-regulatory sequences (based on
chromatin accessibility, transcription factor binding, epigenetic
modification signatures). Although biologically intuitive, such an
approach does not take into account the complex interactions of
the underlying gene regulatory network (GRN) in which a causal
noncoding variant exerts its effect, namely, interactions among
transcription factors and their target genes as well as interactions
among target genes in the same pathway. Molecular networks
have been explicitly used to improve the inference accuracy of
causal coding variants21–24. This potential has not been examined
for noncoding variants. To address these shortcomings, we pos-
tulate that (1) the impact of causal eSNPs on gene expression is
transmitted through the GRNs in the cell/tissue types that are
relevant to the studied trait; and (2) the genes affected by the full
set of causal eSNPs for a trait are organized in a limited number
of pathways. We test this hypothesis by developing a general
computational framework for identifying causal noncoding var-
iants that affect a specific disease/trait.

Linkage disequilibrium (LD) presents another challenge for
finding causal noncoding variants. By casting the causal inference
problem into a subnetwork identification problem, our method
evaluates both GWAS lead SNPs and linked SNPs simulta-
neously, thus increasing the power of the inference. Further, our
network-based approach naturally provides a pathway content for
understanding the predicted causal eSNPs.

We characterize the performance of our method using known
risk mutations in gene promoters in 20 diseases and gene
enhancers in 10 diseases. We further validate randomly selected
predictions using luciferase reporter assay. By applying our
method to seven autoimmune diseases, we obtain a systems view
of the entire set of risk eSNPs in a given disease and equally
important the subnetwork that is perturbed by the set of risk
eSNPs.

Results
Construction of disease-relevant gene regulatory network. A
number of previous studies have reported enrichment of GWAS
SNPs in regulatory DNA sequences specific to disease-relevant
tissues or cell types12,13, emphasizing the importance of knowl-
edge about tissue-specific regulatory sequences for identifying risk
variants. Additionally, gene−gene and protein−protein

interaction networks have been used to identify causal coding
variants21,25,26. Because the effects of non-coding variants are
transcriptionally integrated, a network-based approach should be
an effective strategy to identify causal noncoding variants. To
date, tissue-relevant GRN has not been used explicitly to prior-
itize noncoding variants. As a first step towards this goal, we
sought to construct an integrative GRN for each disease-relevant
cell/tissue type. We integrated epigenomic, transcriptomic and
functional gene−gene interactions to construct the network. Our
integrative network has two parts, the first part involves inter-
actions between enhancers and target genes EP edges, which is a
major challenge in constructing GRN in general. By using our
recently developed algorithm, IM-PET (Fig. 1a)27, we constructed
23 cell/tissue-specific enhancer−promoter (EP) networks that are
relevant to the set of 16 diseases in this study (Supplementary
Table 1). We evaluated the accuracy of IM-PET using a com-
pendium of Hi-C and ChIA-PET chromatin interaction data
from nine cell types (GM12878, K562, IMR90, HMEC, NHEK,
HUVEC, Hela, CD34+ cells, and CD4+ T cells, Supplementary
Table 2). The overall Area Under the Precision and Recall Curve
(auPRC) curve were 0.89 and 0.84 using Hi-C and ChIA-PET
interactions as the gold standard, respectively (Fig. 1b), suggesting
high quality of the EP predictions by IM-PET. The second part of
the integrative network consists of functional interactions
between target genes. For this, we used probabilistic functional
gene interaction network inferred by integrating multiple lines of
evidence (i.e. HumanNet, see Methods) 21. Interactions in the
backbone HumanNet are not disease-specific; to add disease-
specific information for the functional gene interaction network,
we add differential gene expression information from case vs
control comparison in disease-relevant cells/tissues. The resulting
integrative GRN contains two types of edges, EP edges repre-
senting enhancer−promoter interactions and FI edges repre-
senting functional gene−gene interactions (Fig. 1c). The final
product is an edge- and node-weighted, disease-relevant GRN,
which is used for predicting risk noncoding variants. See Methods
for additional details about the network construction.

ARVIN combines sequence-based and network-based features.
We hypothesized that disease-relevant GRN could improve the
inference accuracy of noncoding risk variants. To this end, we
examined a number of network-based features to see if they can
discriminate true risk SNPs from negative control SNPs. We
obtained 233 gold-standard risk SNPs located in gene promoters
from the Human Gene Mutation Database (HGMD) 28. This set
of SNPs is associated with 20 different diseases (Supplementary
Data 1). We assigned a WEP value of 1 to edges between an SNP
and the genes whose promoter harbors the SNP, since the gene
promoters are annotated with very high confidence in the
Ensembl database. We used gene expression data of case and
control samples (Supplementary Table 3) to compute the gene
weight, WDE. Next, we used the constructed disease-relevant
GRNs to compute the following network-based features: module
score, weighted node degree, betweenness centrality, closeness
centrality, and page rank centrality (see Methods for details).
These features are designed to evaluate the topological impor-
tance of the direct target gene of a promoter or enhancer SNP as
well as the local network neighborhood of the target gene. Our
hypothesis is that target genes with large topological importance
in the GRN might be rate-limiting genes for disease pathogenesis.
We found that the set of network features can indeed distinguish
true risk SNPs from control SNPs (Fig. 2a). Next, we compared
the discriminative power of disease-specific and non-disease-
specific networks. We found that values of network features are
less separated between risk and control SNPs when using non-
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disease-specific networks (Supplementary Fig. 1), further sup-
porting utility of disease-specific network for identifying risk
SNPs.

To further test the discriminative power of the network-based
features, we built a random forest (RF) classifier using these
features and sequence-based features used by two state-of-the-art
methods, genome-wide annotation of variants (GWAVA)16 and
FunSeq220. We evaluated the relative importance of all features
(six from this study and 182 from GWAVA and FunSeq2
combined) by using a recursive feature elimination (RFE)
approach. Applying the RFE procedure yielded a set of 35 most
discriminative features based on classification error (Supplemen-
tary Figs 2 and 3). Strikingly, all network-based features were
ranked in the top ten (Supplementary Data 2), suggesting that
network-based features are independently discriminative from the
sequence-based features. On the other hand, the fact that 35
features were selected suggests that network-based features and
sequence-based features are complementary to each other. We
examined potential interactions among selected features and
found significant association between network-based features and
sequence-based features, further supporting the notion that these
two types of features are complementary (Supplementary Fig. 4).
Based on this finding, we developed the Annotation of Regulatory
Variants using Integrated Networks (ARVIN) algorithm by

combining network features with sequence features (Fig. 2b).
We evaluated the classification accuracy using fivefold cross-
validation and the set of 233 gold-standard risk SNPs in gene
promoters. ARVIN achieved an area under the ROC curve
(auROC) of 0.96, significantly larger than those of GWAVA
(auROC= 0.85, P= 1.7×10−12) and FunSeq2 (auROC= 0.82,
P= 4.2×10−15) (Fig. 2c).

Many genes are regulated by distal enhancers. Compared to
promoter variants, risk variants located in distal enhancers are
more challenging to study due to the difficulty of assigning
enhancer targets and existence of multiple enhancers targeting
the same gene. We further tested the performance of ARVIN
using risk SNPs located in enhancers. We curated a set of 15
experimentally validated risk enhancer SNPs implicated in ten
complex diseases, including autoimmune, heart, lung, psychiatric
diseases, obesity, and cancer (Supplementary Table 4). Compared
to promoter variants, the set of gold-standard enhancer variants
is too small for ROC curve analysis to be meaningful. Therefore,
for each risk SNP, we asked how it is ranked by a method among
all enhancer SNPs in the same LD block as the risk SNP. The
number of linked eSNPs ranges from 1 to 168 with an average of
28 (Supplementary Table 6), highlighting the difficulty of
identifying true risk SNPs. Overall, both ARVIN and ARVIN
with network feature alone (ARVIN-N) outperformed GWAVA
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and FunSeq2. The median percentile ranking of the set of known
risk eSNPs were 1, 5, 47, and 45% for ARVIN-N, ARVIN,
GWAVA, and FunSeq2, respectively (vertical lines, Fig. 3).

In summary, using gold-standard risk SNPs in both promoters
and enhancers, we demonstrate that incorporation of network
features can significantly improve the accuracy of finding risk
enhancer SNPs.

Application of ARVIN to autoimmune diseases. We applied
ARVIN to identify risk eSNPs associated with seven autoimmune
diseases (Crohn’s disease, multiple sclerosis, psoriasis, rheuma-
toid arthritis, systemic lupus erythematosus, type 1 diabetes, and
ulcerative colitis). We first obtained lead SNPs associated with
those diseases from the National Human Genome Research
Institute (NHGRI) GWAS Catalog29. On average, there are 123
GWAS lead SNPs per disease (Supplementary Table 5). As can-
didate SNPs, we considered both lead SNPs and SNPs that are in
the same LD block with the lead SNPs. By overlapping SNPs with
enhancers from disease-relevant cell/tissue types, we obtained the
list of eSNPs as the final input to ARVIN. On average, there are
66 eSNPs for each disease-associated locus tagged by a lead
GWAS SNP.

Using ARVIN cutoff that yields an optimal set of predictions
(Supplementary Methods, Supplementary Fig. 5), on average, we
predicted 160 risk eSNPs for each autoimmune disease (Fig. 4a).
We evaluated the predictions using eQTLs identified in disease-
relevant tissues by the GTEx consortium and by Westra et al.30,31

(Supplementary Table 6). For six out of seven autoimmune
diseases, the set of risk eSNPs predicted by ARVIN has significant
overlap with eQTLs identified in relevant tissues. In contrast, only
predictions by FunSeq2 in one disease (rheumatoid arthritis) have
significant overlap with eQTL data (Fig. 4a).

To experimentally test the predicted risk eSNPs, we randomly
selected four predicted risk eSNPs with ARVIN scores in the top,
middle, and bottom thirds of the score distribution, respectively.
As a comparison, we also randomly chose four eSNPs that are

negative predictions by ARVIN (Supplementary Table 7). We
first used dual luciferase reporter assay to test the activity of the
enhancers in CD4+ T cells. All 16 enhancers (12 containing
predicted risk eSNPs and 4 containing negative predictions)

rs9930506 (OBE)

rs200820567 (SLE)

rs6983267 (CRC)

rs148314165 (SLE)

rs1542725 (COPD)

rs10811656 (CAD)

rs2159100 (SZA)

rs6537296 (COPD)

rs4442975 (BRC)
rs10757278 (CAD)

rs339331 (PRC)

rs4784227 (BRC)

rs11568821 (SLE)

rs2168101 (NBL)

rs12740374 (MI)
0

20

40

60

80

100

120

140

N
um

be
r 

of
 li

nk
ed

 S
N

P
s 

in
 th

e 
sa

m
e 

LD
 b

lo
ck

 

Percentile rank (rank/# linked SNPs)

0.0 0.2 0.4 0.6 0.8 1.0

ARVIN

ARVIN-N

GWAVA

FunSeq2

Fig. 3 Performance benchmarking using known risk SNPs located in
enhancers. References for validated risk enhancer SNPs are provided in
Supplementary Table 4. Y-axis represents the number of linked eSNPs in
the same LD block as the known risk SNP(s). Performance is expressed as
percentile ranking on the x-axis in which each gold-standard risk SNP was
ranked against all other SNPs in the same linkage equilibrium block as the
gold-standard SNP. Filled symbols, rank of an individual gold-standard SNP
by a given method. Vertical lines, median rank of the full set of gold-
standard SNPs by a given method. SNP IDs and associated diseases are
shown on the right. SLE, systemic lupus erythematosus; PSO, psoriasis;
CRC, colorectal cancer; PRC, prostate cancer; RA, rheumatoid arthritis;
OBE, obesity; MI, myocardial infarction; BRC, breast cancer; COPD, chronic
obstructive pulmonary disease; SZA, schizophrenia; CAD, coronary artery
disease; NBL, neuroblastoma

B
et

w
ee

nn
es

s 
ce

nt
ra

lit
y

C
lo

se
ne

ss
 c

en
tr

al
ity

P
ag

er
an

k 
ce

nt
ra

lit
y

W
ei

gh
te

d 
de

gr
ee

0

20

40

60

0

10

20

30

0

2

4

6

8

10

1

2

3

4

M
od

ul
e 

sc
or

e

9.672

9.673

9.674

9.675P= 4.5E–7 P= 9.5E–11
P= 2.4E–8 P= 6.9E–10

P= 3.9E–6
Risk eSNP

Control eSNP

Subnetwork
inferenceGene

Network
features

Causal variant
Yes/No?

Random 
forest

classifier

...

Genomic & 
epigenomic

features

Disease-relevant
regulatory network

Single nucleotide variants
(SNVs)

a

b

c

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

ARVIN-N (0.95)
GWAVA (0.85)

ARVIN (0.96)

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

FunSeq2 (0.82)

Fig. 2 ARVIN combines genomic, epigenomic, and network features to prioritize risk SNPs. a Network features extracted from a disease-relevant gene
regulatory network are discriminative. P values are based on t test. b Overview of ARVIN. c Receiver Operating Characteristic (ROC) curves using known
risk SNPs located in gene promoters. Values in parenthesis are area under the ROC curve. P values are computed using a bootstrap-based method55.
ARVIN-N ARVIN using network-based features only

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03133-y

4 NATURE COMMUNICATIONS |  (2018) 9:702 | DOI: 10.1038/s41467-018-03133-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


significantly enhance luciferase activity in comparison to the two
negative control sequences (Fig. 4b). Next, we compared the
enhancer constructs that contain alternative alleles of the
predicted eSNPs (Supplementary Table 8). Among the 12
predicted risk eSNPs, 11 show differential enhancer activities
(P < 0.05) with different alleles of the SNPs. In contrast, none of
the negative predictions show significant activity difference
between the two alleles of the SNP (Fig. 4c).

Many genes are targeted by multiple risk noncoding variants.
Increasing evidence suggests that many genes are regulated by
multiple enhancers during normal and disease development27,32–
35. This phenomenon suggests that mutations in multiple
enhancers of the same gene could collectively contribute to the
deregulation of the gene during pathogenesis. Consistent with this
hypothesis, among the seven autoimmune diseases, we found that
32% of genes are affected by multiple predicted eSNPs that are
located in multiple enhancers targeting these genes (Fig. 5a).

We tested whether two risk eSNPs that target the same gene
increase disease risk compared to each eSNP alone. We used

GWAS data generated by the Wellcome Trust Case Control
Consortium36,37 for six autoimmune diseases, including Crohn’s
disease, multiple sclerosis, psoriasis, rheumatoid arthritis, type 1
diabetes, and ulcerative colitis.

For all risk eSNP pairs targeting the same gene, we assessed
their combined effect on disease risk using a permutation-based
procedure38 (see Methods). At P < 0.05, we found that the
percentage of eSNP pairs with increased risk ranges from 19% for
type 1 diabetes to 57% for multiple sclerosis with an overall
percentage of 44% across the six diseases (Fig. 5b).

Besides risk eSNPs, we further investigated the genes targeted
by multiple risk eSNPs. We found several unique features about
these genes. First, they tend to have higher network centrality
measures (Fig. 5c). Second, their expression levels are more
perturbed in disease samples compared to control samples
(Fig. 5d). A higher percentage of the regulating risk eSNPs
overlap with eQTLs (Fig. 5e). Finally, they are enriched for more
Gene Ontology (GO) terms for direct immune responses (Fig. 5f).
Taken together, these unique properties of multi-targeted genes
suggest they might be rate-limiting genes in disease pathogenesis.
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Figure 6a, b shows two example genes that are targeted by
multiple risk eSNPs. IRF1 plays a critical role in regulatory T-cell
function and autoimmunity39. It is targeted by two enhancers
based on both IM-PET prediction and experimental Capture-Hi-
C data in CD4+ T cells40. The two eSNPs (rs4143335 and
rs2706356) significantly disrupt the binding of HNF4A and E2F1,
respectively. Both E2F141 and POU2F142 have been shown to be
important transcriptional regulators of CD4+ T-cell function.
When we determined the clinical risk (odds ratio) for Crohn’s
disease based on the genotype of both variants, we found an

increase in clinical risk to an odds ratio of 1.22 for individuals
homozygous for the risk allele (T) of rs2706356 and homozygous
for the C allele of rs4143335 (Fig. 5g, Supplementary Fig. 6). The
other example involves the gene PFKFB3 that encodes a rate-
limiting glycolytic enzyme. Deficiency of PFKFB3 has been linked
to reprogrammed metabolism in T cells from rheumatoid
arthritis patients43,44. The two risk eSNPs (rs77950884 and
rs17153333) significantly disrupt the binding of HNF4A and
E2F1, respectively. Interestingly, in both examples, the lead
GWAS SNPs are not predicted to be the risk SNPs, emphasizing
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the challenge of finding risk SNPs in the presence of genetic
linkage.

Most perturbed subnetwork by all risk eSNPs in a disease. It
has been suggested that the effects of multiple low-penetrance
enhancer variants can be amplified through coordinated dysre-
gulation of the entire GRN of a key disease gene, as illustrated in
an elegant study by Chatterjee and colleagues35. To obtain a
systems-level view of the pathways collectively perturbed by all
risk eSNPs in a disease, we used the Prize Collecting Steiner Tree
(PCST) algorithm to identify a connected subnetwork composed
of all risk eSNPs and genes bridging the risk eSNPs in the net-
work. By algorithmic design, the resulting subnetwork is max-
imized for nodes and edges with large weights. In other words,
these are downstream genes that have high levels of differential
expression and functional interactions. Therefore, the effects of
the risk eSNPs are most likely propagated via such a subnetwork.

For each disease, we compared the subnetworks downstream of
risk eSNPs predicted by ARVIN, GWAVA, and FunSeq2,
respectively. We found that subnetworks downstream of
ARVIN-predicted eSNPs have more enriched GO terms related
to immune cell functions (Fig. 7a), further suggesting the
predicted upstream eSNPs are more likely to be causal eSNPs.

Figure 7b shows an example subnetwork for rheumatoid
arthritis. Such a network view reveals two interesting features of
the perturbations caused by risk eSNPs. First, we found that

multiple members of a pathway can be targeted by different risk
eSNPs. For instance, the subnetwork contains ten genes that are
involved in the RhoA-mediated small GTPase signaling (high-
lighted in a square). Six of the ten genes are individually targeted
by different risk eSNPs. Rho kinase signaling has been shown to
have a critical role in the synovial inflammation of rheumatoid
arthritis45,46. Second, we found that many genes targeted by risk
eSNPs are not located in disease-associated loci. This is consistent
with the notion of long-range interaction between enhancers and
their target genes. Most perturbed subnetworks for other diseases
in this study are shown in Supplementary Fig. 7.

Discussion
A number of methods have been developed for inferring non-
coding risk variants. Although they differ by the computational
methodology used, conceptually, all existing methods use
sequence and chromatin features around a candidate variant to
make a prediction. Transcription regulation occurs in a complex
network of regulatory interactions between transcription factors
and target genes. To better understand noncoding risk mutations,
they should be examined in the context of the regulatory network
of disease-relevant cell type(s). To our knowledge, ARVIN is the
first method that explicitly uses disease-relevant GRN for finding
noncoding risk variants. Disease-specific transcriptomic and
epigenomic data are integrated with a probabilistic functional
gene interaction network to generate a weighted GRN, which
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serves to provide disease-specific information and reduce noise at
the same time. Using gold-standard noncoding variants, we
demonstrate that genes targeted by causal SNPs exhibit char-
acteristic network features compared to genes targeted by non-
causal SNPs. The network-based features are complementary to
sequence-based features. Combination of both types of features
achieves the highest accuracy in predicting causal noncoding
mutations. In support of the utility of disease-specific network for
finding noncoding risk variants, we found that both the separa-
tion of feature values and classification accuracy decrease when
non-disease-specific networks are used in ARVIN (Supplemen-
tary Fig. 1). Although we focused on common germline variants
in this study, ARVIN is also applicable to somatic and rare var-
iants because the same mechanisms of transcriptional regulation
are affected by the different types of mutations.

A recent study demonstrated that multiple low-penetrance
enhancer variants can cause significant dysregulation of the entire
GRN by targeting a key disease gene35. Along this line, our sys-
tematic analysis of seven autoimmune diseases revealed the
abundance of combinatorial risk variants that affect the same
gene. This result is supported by the observation that promoters
of many genes are physically contacted by multiple
enhancers33,34,47. Our result suggests that genes affected by
combinatorial risk variants tend to be more centrally located in
the GRN, have higher expression change in response to disease,
and directly mediate immune responses. Taken together, these
unique features strongly suggest that genes affected by multiple
risk eSNPs may play a rate-limiting role in disease pathogenesis.

Beyond studying individual risk eSNPs, it would be tre-
mendously useful to have a holistic view of the subnetwork jointly
perturbed by all risk eSNPs in a disease. To this end, we used the
PCST algorithm to identify the core subnetwork that is most
perturbed by all risk eSNPs in a disease. Knowledge about the
perturbed subnetwork can be used to prioritize genes and variants
for follow-up studies. Furthermore, comparative analysis of the
perturbed subnetworks in different diseases may lead to novel
insights into disease pathogenesis and suggest novel therapeutic
strategies.

ARVIN can be improved in a few ways. First, the performance
of ARVIN can be affected by the quality of GRN. In this study, we
addressed this issue by weighting the edges and nodes in the
network. To further examine the robustness of our method, we
substituted HumanNet with the functional gene interaction net-
work annotated in the STRING database48. Using the same set of
gold-standard promoter and enhancer SNPs, we found that
ARVIN achieves similar performance gain compared to GWAVA
and FunSeq2 (Supplementary Fig. 8). To further evaluate the
general applicability of ARVIN on enhancer−promoter networks,
we compared the performance of the three methods using alter-
native tissue-specific networks constructed using enhancer
−promoter interactions generated by the FANTOM5
consortium49,50. Again we found that ARVIN achieves the best
performance (Supplementary Fig. 9).

As more experimental data on molecular interactions become
available, they can be used to construct more accurate GRNs. In
addition, since ARVIN is a supervised method, its accuracy
depends on the training set. The training set we used (HGMD28)
is the most comprehensive manually curated disease mutation
database. It only includes causal diseases variants, excluding those
that are associated with the disease due to linkage with another
known risk variant51. However, it may be possible that some
false-positive variants are included due to linkage with yet-to-be
discovered causal SNPs. As the annotation for causal variants
continue to improve, they can be used to train a more robust
classifier.

Methods
ARVIN framework. Key components of the computational framework are
described in the following sections: construction of disease-relevant GRN, com-
putation of network-based features associated with candidate eSNPs, and classifier
for risk eSNPs using genomic, epigenomic, and network-based features.

Construction of disease-relevant gene regulatory network. Network con-
struction starts with identifying eSNPs. For each lead GWAS SNP, we identify the
LD block to which it belongs. We then intersect the set of SNPs in the LD block
with the set of enhancers from cell/tissue types relevant to the disease. This gives us
a set of enhancer SNPs (eSNPs) in a given LD block identified by the lead GWAS
SNP.

The GRN consists of two types of nodes, representing eSNPs and genes, and
two types of edges, those between eSNPs and gene(s) (denoted as EP edges) and
those between genes (denoted as FI edges) (Fig. 1c). EP edges represent regulatory
relationship between an enhancer and its target(s). FI edges represent functional
interactions between genes. EP edges are based on enhancer−promoter
interactions predicted by the IM-PET algorithm27 (Fig. 1a). Note that the enhancer
−promoter interactions are also predicted using ChIP-Seq and gene expression
data from cell/tissue types relevant to the disease. FI edges are taken from
HumanNet, which is a probabilistic functional gene network of 16,222 protein-
encoding genes in humans21. Each interaction in HumanNet has an associated
probability representing a true functional linkage between two genes. It is
constructed by a Bayesian integration of 21 types of “omics” data including
physical interactions, genetic interactions, gene co-expression, literature evidence,
homologous interactions in other species, etc. HumanNet has been successfully
used for improving inference accuracy of coding variants. Interactions in
HumanNet are not disease-specific, to add disease-specific information for the
functional gene interaction network, we add differential gene expression
information from case vs control comparison in disease-relevant cells/tissues.

Nodes and edges in the network were weighted to (1) take into account the
noise in the data; (2) to represent the relative importance of different genes and
interactions. Weights for eSNPs, WeSNP, are based on the P value of disrupting
putative transcription factor binding site due to the SNP. Weights for genes, WDE,
are based on the P values of differential gene expression between case and control
samples. Weights for EP edges, WEP, are based on the probability for enhancer
−promoter interaction outputted by the IM-PET algorithm. Weights for FI edges,
WFI, are taken from HumanNet. To make the values of each type of weights
comparable, we performed min-max normalization for each type of weights.

Network-based features associated with candidate eSNPs. We compute five
network-based features. The first one is module score, which is based on the gene
modules downstream of an eSNP. Our overall hypothesis is that a causal eSNP
contributes to disease risk by directly causing expression changes in genes of
disease-relevant pathways. Thus, in addition to the direct target gene of the eSNP,
other genes in the same pathway can also provide discriminative information. With
the weighted GRN, our goal is to identify “heavy” gene modules in the network that
connects a given eSNP to a set of genes (encircled modules in Fig. 1c), hereby
termed eSNP module. On the other hand, non-causal eSNPs are expected to be
associated with “light” modules, i.e. having marginal impact on pathway gene
expression (e.g. eSNP3 in Fig. 1c). To score a candidate module, we use the fol-
lowing additive scoring scheme by summing up all node and edge weights divided
by the number of nodes (N) in the candidate module.

S ¼ ðWeSNP þ WDE þ WEP þ WFIÞ=N:

We conduct module search from all eSNPs in the weighted network. It is an NP-
hard problem to obtain a global optimal solution consisting of all heavy subnet-
works. We thus use a greedy search strategy. Starting with each eSNP, our algo-
rithm considers all genes connected to the current eSNP-module and add the node
whose addition leads to the maximal increase of the scoring function. This pro-
cedure repeats until there is no node whose addition can improve the module
score. Several recent studies have reported that multiple enhancer elements could
be present at a single GWAS locus52,53. Our network-based framework can
naturally handle such cases because we consider all eSNPs simultaneously during
module search. We assessed the statistical significance of candidate modules using
randomized networks. Specifically, for edges, we randomized them by edge-
preserved shuffling. For nodes, we randomly shuffled their values within each type
(i.e. among genes or among eSNPs). The empirical Pvalues are computed based on
the null score distribution from the randomized networks.

The second network-based feature is weighted degree of a node v directly
downstream of an eSNP. It is defined as ∑(u,v)∈EW(u,v), (where W(u,v) is the edge
weight for the edge connecting nodes u and v.

The third network-based feature is betweenness centrality of a node v directly
downstream of an eSNP. Betweenness centrality of a node in a network
corresponds to the proportion of shortest paths in the network going through node.
The raw betweenness centrality is defined as CB(v)= ∑v≠t≠u (σtu (v))/σtu, where σtu
is the total number of shortest paths between node t and node u. σtu(v) is the subset
of σtu that go through v. The normalized betweenness centrality is defined as
C′B vð Þ ¼ CB vð Þ ´ N , where N is the total number of nodes in the network.
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The fourth network-based feature is closeness centrality of a node v directly
downstream of an eSNP. Closeness centrality is the inverse of the sum of shortest
paths between a node and all nodes in a network. It is proportional to the time by
which information spreads from the node of interest to all other nodes in the
network. The raw closeness centrality is CCðvÞ ¼ 1=

P
u≠v d u; vð Þ, where d(u,v)

indicates the length of the shortest path between u and v. The normalized closeness
centrality is defined as C′CðvÞ ¼ CCðvÞ ´ N , where N is the total number of nodes
in the network.

The fifth network-based feature is page rank centrality of a node vdirectly
downstream of an eSNP. Page rank centrality is a network measure based on the
idea that the importance of a given node is determined by itself and its neighbors’
importance. Page rank centrality of a node vis defined as CP (v)= (1−d)/(N)+∑v∈V
(v) (CP (v))/L(v), where V(v) is first neighbors of node v and L(v) is the set of edges
incident on node v. d denotes a damping factor adjusting the derived value
downward and N is the total number of nodes in the network. The normalized page
rank centrality is defined as C′PðvÞ ¼ CPðvÞ ´ N .

Predicting risk variants. To classify risk eSNPs, we trained an RF classifier using
the combined feature set that consists of 5 network-based features, 6 binary fea-
tures from FunSeq, and 175 features from GWAVA. The classifier contained 500
decision trees. Each decision tree was built using ~20% of randomly selected
training data (100 out of 464) and

ffiffiffiffiffiffiffi
187

p � 14 randomly selected features. Clas-
sification error was measured with data not used for training (i.e. out of bag data).
To compute feature importance, for each decision tree, the classification error was
computed using permuted and non-permuted feature values. The difference
between the two classification errors were then averaged over all trees and used as
feature importance.

To select most predictive features, we used an RFE strategy54. At each iteration of
the feature selection, the top S most important features were selected. The RF model
was refit and corresponding performance was evaluated. To access the variance in
performance at each iteration of feature selection, we did fivefold cross-validation.
After all iterations, the optimal set of features was determined using the subset with
best average performance across fivefold cross-validation. Receiver operating
characteristic (ROC) curve is used to evaluate prediction performance. Difference in
auROC between two ROC curves is computed using a bootstrap-based method55.

Based on the optimal set of features, we build an RF classifier. Given a genetic
variant along with its feature values, the classifier outputs a prediction probability
indicating how likely this genetic variant is a risk variant in a given disease.

Predictions of enhancers and enhancer−promoter interactions. Enhancers
were predicted using the Chromatin Signature Inference by Artificial Neural
Network CSI-ANN algorithm10. The input to the algorithm is the normalized
ChIP-Seq signals of three histone marks (H3K4me1, H3K4me3, and H3K27ac).
The algorithm combines signals of all histone marks and uses an artificial neural
network-based classifier to make predictions of active enhancers with the histone
modification signature “H3K4me1hi+H3K4me3neg/lo+H3K27achi”. The training
set for the classifier was prepared using ENCODE data of mouse ES-Bruce4, MEL,
and CH12 cell lines. To create the training set for active enhancers, we first selected
a set of promoter-distal p300 binding sites (2.5 kb from Refseq TSS), and over-
lapped them with the histone modification peaks. The top 300 distal p300 sites that
overlapped with H3K4me1 and H3K27ac peaks, but not H3K4me3 peaks, were
selected as the positive set. One thousand randomly selected genomic regions and
500 active promoter regions were used as the negative set. Enhancers were pre-
dicted using a false discovery rate (FDR) cutoff of 0.05. Predicted enhancers that
overlapped by at least 500 bp were merged by selecting the enhancer with the
highest CSI-ANN score. We obtained histone modification ChIP-Seq data from the
NCBI Epigenome Atlas, Roadmap Epigenomics Project, Encyclopedia of DNA
Elements (ENCODE), International Human Epigenome Consortium, and the GEO
database (Supplementary Table 1).

Target promoter(s) of an enhancer were predicted using the IM-PET27

algorithm. It predicts enhancer−promoter interactions by integrating four features
derived from transcriptome, epigenome, and genome sequence data, including: (1)
enhancer−promoter activity correlation, (2) transcription factor-promoter co-
expression, (3) enhancer−promoter co-evolution, and (4) enhancer−promoter
distance. Here, we used tissue/cell type-specific histone modification ChIP-Seq and
RNA-Seq data (Supplementary Table 1) to compute values of features 1, 3, and 4
for the given tissue/cell type. Values of feature 3 were based on sequence
conservation across 15 mammalian species (human, chimp, gorilla, orangutan,
gibbon, rhesus, baboon, marmoset, tarsier, mouse lemur, tree shrew, mouse, rat,
rabbit, and guinea pig). We used an FDR cutoff of 0.05 as the threshold for making
predictions.

Evaluation of enhancer−promoter predictions. We searched for large-scale
chromatin interaction data measured using either Hi-C or ChIA-PET protocol
(Supplementary Table 2). We used the reported EP interactions in these studies as
the gold standard to assess the quality of our predicted enhancer−promoter pairs.
We first identified EP pairs in which the enhancers overlap with the interacting
fragments reported by Hi-C or ChIA-PET studies. Those EP pairs are regarded as
eligible for comparison with Hi-C or ChIA-PET data. We then computed the ROC

curves using EP interactions reported in either Hi-C or ChIA-PET studies as the
gold standard.

Gold-standard risk variants located in gene promoters. The Human Gene
Mutation Database (HGMD, version 2014 r1)28 was used to select regulatory
variants located in promoter region that was defined as 2 kb upstream and 0.5 kb
downstream of TSS. Transcript annotation was based on Gencode v19 (GRCh37).
Only transcripts with high confidence were used (level <3). We selected all diseases
and their associated SNPs in HGMD that satisfied the following three criteria: (1)
SNPs have the annotation of “DP” (disease-associated polymorphism), or “FP”
(polymorphism exerts a direct functional effect), or “DFP” (disease-associated
polymorphism with additional supporting functional evidence) or “DM” (disease
causing mutation) in HGMD; (2) case and control gene expression data were
available for the disease; (3) genes of the reported promoter were present in the
HumanNet connected network. For negative control SNPs, we used common
(minor allele frequency ≥ 1%) SNPs from the 1000 Genomes Project. Seventy-five
percent of the HGMD variants lie within a 2 kb window flanking the transcription
start site16. Therefore, we selected negative control SNPs such that the distance
distribution to the nearest TSS matches that of the positive training set in order to
control for the bias in the positive set. The lists of positive and negative control
variants are provided in Supplementary Data 1.

Processing of gene expression profiling data. All gene expression microarray
data were analyzed using the limma package56. Raw microarray data were back-
ground corrected and quantile normalized. Linear model was fit to the data using
the lmFit function of limma. Differential expression was assessed at probe level
using the empirical Bayes (eBayes) method. To summarize differential expression
at gene level, we selected the minimum P value across the probes that match to a
gene. The list of gene expression data sets used in this study to assess differential
expression is provided in Supplementary Table 3.

Gold-standard risk variants located in enhancers. We curated a set of experi-
mentally validated eSNPs from multiple resources, including HGMD28, ClinVar57,
Open Regulatory Annotation Database (OregAnno) 58, and manual search of
PubMed literature. We accepted an eSNP as being validated only if it satisfies the
following criteria: (1) significant association of the eSNP with the disease; (2) there
is direct experimental evidence that the GWAS SNP causes differential TF binding
and gene expression change; and (3) the enhancer is located more than 5 Kbp away
from the affected gene promoter. The list of experimentally validated eSNPs is
provided in Supplementary Table 4.

Identification of linkage equilibrium blocks. We used data from the 1000 Gen-
omes project (phase 3 release) to identify SNPs in the same LD with experimentally
validated enhancer SNPs and GWAS catalog lead SNPs. PLINK59 was used to
identify linked SNPs with D′ > 0.9 and within 1Mb from either validated enhancer
SNPs or GWAS lead SNPs. SNPs with D′ > 0.9 with the index SNP are considered
in the same LD block as the index SNP.

FunSeq2 and GWAVA features. FunSeq220 employs seven binary and four
continuous features to determine if a variant is deleterious, including: (1) overlap
with ENCODE annotation of cis-regulatory elements such as enhancer, promoter,
or DHS; (2) overlap with sensitive region (i.e. high level of negative selection); (3)
overlap with ultrasensitive region; (4) overlap with ultra-conserved elements; (5)
overlap with HOT (highly occupied by transcription factors); (6) overlap with
regulatory elements associated with genes; (7) recurrence in multiple samples; (8)
Motif-breaking score; (9) Motif-gaining score; (10) Network centrality score; and
(11) GERP score. Feature values for candidate SNPs were obtained by SNP coor-
dinates to FunSeq2 web portal.

GWAVA uses16 175 genomic and epigenomic features including overlap with
histone modification and Transcription Factor ChIP-Seq peaks. We obtained
GWAVA feature values for candidate SNPs using the various annotation data
sources and Python script (gwava_annotate.py) provided in the
GWAVA supplementary portal.

Identifying the subnetwork affected by a set of risk eSNPs. To identify the
subnetwork collectively affected by a set of risk eSNPs in a disease, we use the PCST
algorithm. Given an undirected graph G=(V,E,c,p), where vertices V are associated
with non-negative profits p and edges E are associated with non-negative costs c. The
PCST algorithm finds a connected subgraph G′= (V′, E′) of G that maximizes the
net profit which is defined as the sum of all node-associated profits minus all edge-
associated costs60. The algorithm takes as the input the disease-relevant regulatory
network and all risk eSNPs implicated in a given disease. Every input eSNP is
considered as a possible root node of the Steiner tree but the one resulting in a
Steiner tree with the largest profit is chosen as the final root node. To identify the
optimal solution, the algorithm will link every input eSNP to the selected root node
maximizing the net profit. This can be solved using message-passing technique61. We
convert our edge score into edge cost by 1−S (i,j), where S (i,j) is the edge score. The
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final output of the algorithm is a tree composed of all risk eSNPs and genes that are
targeted by them. The eSNPs are connected via interactions among the target genes.

Generation of non-disease-specific networks. For studying risk variants in
promoter, we used the following procedure to construct non-specific networks: (1)
using only backbone HumanNet without adding disease-specific differential gene
expression information (resulting network termed “No-DE” network); (2) using
backbone HumanNet and add differential expression information averaged over all
diseases in this study (resulting network termed “AVG-DE” network; (3) using
backbone HumanNet and add differential expression information from mismatched
cell/tissue types, e.g. when studying heart disease variants, using intestine gene
expression data (resulting network termed “Mismatch-DE” network).

For studying risk variants in enhancers, we used the same procedure to create
non-specific gene functional interaction network (i.e. FI edges). In addition, for the
EP interaction (EP edges), we similarly removed, averaged, and shuffled EP
interaction scores but kept the same topology respectively to make EP interactions
non-disease specific.

P value for eSNPs that disrupt transcription factor binding sites. For each
eSNP, we first scan sequences containing the eSNP using TF binding motifs from
the Cis-BP database62 and calculate the log-odds ratio score for the SNP-containing
sequence. If at least one allele for the SNP has a score greater than the threshold
that corresponds to a P value 4×10−7, which is computed using TFM-Pvalue
method63 for each motif separately, the sequence is considered as a TF binding site.

Next, the difference in the motif score between the two alleles is computed and
compared to a null distribution of motif score differences using one million randomly
selected SNPs reported by the 1000 Genomes project. Raw P value is corrected for
multiple testing using the Benjamini−Hochberg method. The motif disruption score
for a given eSNP is the negative logarithm of the most significant motif disruption
P value among all TF motifs having a binding site overlapping with the eSNP.

SNPs associated with autoimmune diseases. We obtained SNPs associated with
seven autoimmune diseases from the GWAS Catalog29. All SNPs have a genome-
wide association P value of 5×10−8 or less. We identified SNPs in the same LD with
the GWAS catalog SNPs. Summary of GWAS Catalog SNPs and linked eSNPs is
provided in Supplementary Tables 5.

Identification of optimal set of risk eSNPs in a disease. ARVIN computes a
probability score for each candidate eSNP. In order to choose a cutoff for final
predictions, we developed the following procedure based on the assumption that a
true risk eSNP should either be a lead or linked to a lead GWAS SNP. We first rank
all eSNPs in descending order of their ARVIN scores. Next, we compute a
cumulative enrichment score as following:

S ¼
Xn
i¼ 1

d ´ pi
d ´ ð1� piÞ

�

where pi is the ARVIN score for eSNP i and d is an indicator function whose value
depends on whether the SNP is located in a disease-associated region, which is
defined as the LD block anchored by a GWAS or ImmunoChIP64 lead SNP with an
association P value < 5×10−8. d takes the value of 1 if eSNP i is in a disease-
associated region, otherwise the value is −1. Based on this scoring scheme, eSNPs
located outside of disease-associated regions contributes negative value to the
enrichment score (Supplementary Figure 2). When S reaches the maximum value,
we use the index i as the optimal number of eSNPs for a given disease.

Evaluation of disease risk of predicted eSNPs with GWAS data. GWAS data
for case and control samples were obtained from the WTCCC (Wellcome Trust
Case Control Consortium). Samples with reported poor quality were excluded from
the analysis. We used data from WTCCC137 data sets for Crohn’s disease (1738
cases), rheumatoid arthritis (1860 cases), type 1 diabetes (1963 cases), and shared
control samples from National Blood Service (NBS) individuals (1456 controls).
We used WTCCC236 data sets for multiple sclerosis (9770 cases), psoriasis (2178
cases), ulcerative colitis (2361 cases), and shared control samples from NBS phase-
2 individuals (2679 controls). Following the best practice guidelines of IMPUTE2,65

we imputed 1000 Genomes Phase 1 variants into each GWAS sample. We made
hard genotype calls by applying a threshold of 0.9 to the maximum posterior
probability of three possible imputed genotypes.

We assessed the combined effect of predicted risk eSNP pairs targeting the same
gene on disease risk using a permutation-based procedure38. First, for each eSNP
pair, we calculated odds ratios for each genotype involving a single SNP. We then
calculated odds ratios for nine genotype combinations involving both eSNPs. Next,
for individuals of each genotype of the first eSNP in the pair, we randomly assigned
a genotype for the second eSNP while maintaining the minor allele frequency of the
second eSNP. We generated 1000 permutations and calculated odds ratios for nine
genotype combinations. Finally, to assess the significance of the risk alteration, we
calculated empirical Pvalues by comparing the odds ratio for real genotype pairs
and distribution of odds ratio from randomized genotypes.

Luciferase reporter assay. Jurkat cells were purchased from ATCC (TIB-152). The
cell line was tested for mycoplasma contamination using ABI MycoSEQ mycoplasma
detection assay (Applied Biosystems). Enhancer sequences containing predicted risk
eSNPs were cloned using In-Fusion HD Cloning Kit (Clontech, Cat # 639648) into a
luciferase reporter construct pGL3-HS in which expression of the luciferase gene is
driven by a minimal heat-shock promoter. Sanger sequencing was used to determine
the alleles of the risk eSNPs. Two control regions of ~2 kb without either H3K4me1
or H3K27ac signals were cloned into the same plasmid as negative controls. Reporter
constructs were transfected into Jurkat cells using TransIT-Jurkat Reagent (Mirus
Bio, MIR 2120). As an internal control, a plasmid containing Renilla luciferase (pRL-
TK from Promega) was co-transfected at a molar ratio of 1:10 for Renilla vs firefly
luciferases. Cells were collected 48 h post transfection and luciferase reporter levels
were measured and compared to Renilla luciferase reporter activity using the Dual-
Luciferase Reporter Assay kit (Promega, cat # E1910). Primer sequences for cloning
enhancers and mutagenesis are listed in Supplementary Tables 7 and 8.

Site-directed mutagenesis of enhancer SNPs. For mutating a SNP within the
tested enhancers, the Q5 site-directed mutagenesis kit (NEB, cat # E0554S) was
used according to vendor’s manual. Briefly, primer pairs containing the desired
mutations were used to generate plasmids with mutations using the original
plasmids as the templates. Sanger sequencing was performed to confirm mutations.

Data availability. We have deposited ARVIN code, accessory scripts, data and
documentation at GitHub with the following url address: https://github.com/
gaolong/arvin.
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