50 research outputs found

    Sharpness Minimization Algorithms Do Not Only Minimize Sharpness To Achieve Better Generalization

    Full text link
    Despite extensive studies, the underlying reason as to why overparameterized neural networks can generalize remains elusive. Existing theory shows that common stochastic optimizers prefer flatter minimizers of the training loss, and thus a natural potential explanation is that flatness implies generalization. This work critically examines this explanation. Through theoretical and empirical investigation, we identify the following three scenarios for two-layer ReLU networks: (1) flatness provably implies generalization; (2) there exist non-generalizing flattest models and sharpness minimization algorithms fail to generalize, and (3) perhaps most surprisingly, there exist non-generalizing flattest models, but sharpness minimization algorithms still generalize. Our results suggest that the relationship between sharpness and generalization subtly depends on the data distributions and the model architectures and sharpness minimization algorithms do not only minimize sharpness to achieve better generalization. This calls for the search for other explanations for the generalization of over-parameterized neural networks.Comment: 34 pages,11 figure

    Use of granite and basalt rock powders as replacement materials in cement production

    Get PDF
    The use of pozzolanic materials, rock powder or fly ash, as an additive to replace some cement additives is considered an innovative and cost-effective way to reduce the negative impact of cement production on the environment. There is no report, however, on the addition of rock powder in cement, which is the key motivation for undertaking this research project. In this study, the physical, chemical and compression properties of cement mortart with different percentages of Granite Rock Powder and Basalt Rock Powder (10, 15, 20, and 25%) were investigated, and were compared to that of cement with fly ash. The compressive tests were conducted at 7 and 28 days. The effect of different percentages of rock powders and fly ash on the microstructure was also conducted in order to provide a better understanding on how these three materials affect cement mortar performance. The results showed that mortars with 10% of Granite Rock Powder and 10% Basalt Rock Powder first obtained higher strength, but were lower than control-1 (100% cement). Compared with ordinary concrete, the strength of the 25% fly ash group increases rapidly, and it is expected to obtain higher strengths in the later stages

    Barley C-Hordein as the Calibrant for Wheat Gluten Quantification

    Get PDF
    The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten composition and total gluten R5 reactivity ranged largely depending on the genotypes and the growing environment. The conversion factor of gliadin to gluten averaged 1.31 for common wheat, which is smaller than the theoretical factor of 2. Each gluten group had varying reactivity against the R5 antibody, where ω1.2-, γ- and α-gliadins were the main reactive groups from wheat gluten. A mixture of wheat cultivars or one single cultivar as the reference material can be difficult to keep current. Based on the average R5 reactivity of total gluten from the 27 common wheat cultivars, here we proposed 10% C-hordein mixed with an inert protein as the calibrant for wheat gluten quantification. In spiking tests of gluten-free oat flour and biscuits, calibration using 10% C-hordein achieved the same recovery as the gliadin standard with its cultivar-specific conversion factor. For its good solubility and good affinity to the R5 antibody, the application of C-hordein increases the probability of developing a series of reference materials for various food matrices

    Barley C-Hordein as the Calibrant for Wheat Gluten Quantification

    Get PDF
    The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten composition and total gluten R5 reactivity ranged largely depending on the genotypes and the growing environment. The conversion factor of gliadin to gluten averaged 1.31 for common wheat, which is smaller than the theoretical factor of 2. Each gluten group had varying reactivity against the R5 antibody, where ω1.2-, γ- and α-gliadins were the main reactive groups from wheat gluten. A mixture of wheat cultivars or one single cultivar as the reference material can be difficult to keep current. Based on the average R5 reactivity of total gluten from the 27 common wheat cultivars, here we proposed 10% C-hordein mixed with an inert protein as the calibrant for wheat gluten quantification. In spiking tests of gluten-free oat flour and biscuits, calibration using 10% C-hordein achieved the same recovery as the gliadin standard with its cultivar-specific conversion factor. For its good solubility and good affinity to the R5 antibody, the application of C-hordein increases the probability of developing a series of reference materials for various food matrices

    Instability and Momentum Bifurcation of molecular BEC in Exotic Dispersion with Shaken Lattice

    Full text link
    We place a molecular Bose-Einstein condensate in a 1D shaken lattice with a Floquet-engineered dispersion, and observe the dynamics in both position and momentum space. At the initial condition of zero momentum, our engineered dispersion is inverted, and therefore unstable. We observe that the condensate is destabilized by the lattice shaking as expected, but rather than decaying incoherently or producing jets, as in other unstable condensates, under our conditions the condensate bifurcates into two portions in momentum space, with each portion subsequently following semi-classical trajectories that suffer minimal spreading in momentum space as they evolve. We can model the evolution with a Gross-Pitaevskii equation, which suggests the initial bifurcation is facilitate by a nearly linear "inverted V"-shaped dispersion at the zone center, while the lack of spreading in momentum space is facilitated by interactions, as in a soliton. We propose that this relatively clean bifurcation in momentum space has applications for counter-diabatic preparation of exotic ground states in many-body quantum simulation schemes

    Your "Flamingo" is My "Bird": Fine-Grained, or Not

    Full text link
    Whether what you see in Figure 1 is a "flamingo" or a "bird", is the question we ask in this paper. While fine-grained visual classification (FGVC) strives to arrive at the former, for the majority of us non-experts just "bird" would probably suffice. The real question is therefore -- how can we tailor for different fine-grained definitions under divergent levels of expertise. For that, we re-envisage the traditional setting of FGVC, from single-label classification, to that of top-down traversal of a pre-defined coarse-to-fine label hierarchy -- so that our answer becomes "bird"-->"Phoenicopteriformes"-->"Phoenicopteridae"-->"flamingo". To approach this new problem, we first conduct a comprehensive human study where we confirm that most participants prefer multi-granularity labels, regardless whether they consider themselves experts. We then discover the key intuition that: coarse-level label prediction exacerbates fine-grained feature learning, yet fine-level feature betters the learning of coarse-level classifier. This discovery enables us to design a very simple albeit surprisingly effective solution to our new problem, where we (i) leverage level-specific classification heads to disentangle coarse-level features with fine-grained ones, and (ii) allow finer-grained features to participate in coarser-grained label predictions, which in turn helps with better disentanglement. Experiments show that our method achieves superior performance in the new FGVC setting, and performs better than state-of-the-art on traditional single-label FGVC problem as well. Thanks to its simplicity, our method can be easily implemented on top of any existing FGVC frameworks and is parameter-free.Comment: Accepted as an oral of CVPR2021. Code: https://github.com/PRIS-CV/Fine-Grained-or-No

    Green synthesis of silver nanoparticles using Eucommia ulmoides leaf extract for inhibiting stem end bacteria in cut tree peony flowers

    Get PDF
    Tree peony (Paeonia suffruticosa Andr.) is a popular cut flower among ornamental plants. However, its short vase life severely hinders the production and application of cut tree peony flowers. To extend the postharvest longevity and improve the horticultural value, silver nanoparticles (Ag-NPs) was applied for reducing bacterial proliferation and xylem blockage in cut tree peony flowers in vitro and in vivo. Ag-NPs was synthesized with the leaf extract of Eucommia ulmoides and characterized. The Ag-NPs aqueous solution showed inhibitory activity against bacterial populations isolated from stem ends of cut tree peony ‘Luoyang Hong’ in vitro. The minimum inhibitory concentration (MIC) was 10 mg L−1. Compared with the control, pretreatments with Ag-NPs aqueous solution at 5 and 10 mg L−1 for 24 h increased flower diameter, relative fresh weight (RFW), and water balance of tree peony ‘Luoyang Hong’ flowers. Additionally, malondialdehyde (MDA) and H2O2 content in pretreated petals were lower than the control during the vase life. The activities of superoxide dismutase (SOD) and catalase (CAT) in pretreated petals were lower than that of the control at the early vase stage and higher at the late vase life. Furthermore, pretreatments with Ag-NPs aqueous solution at 10 mg L−1 for 24 h could reduce bacterial proliferation in the xylem vessels on the stem ends by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Overall, pretreatments with green synthesized Ag-NPs aqueous solution effectively reduced bacteria-induced xylem blockage of cut tree peony, resulting in improved water uptake, extended vase life, and enhanced postharvest quality. Therefore, this technique can be used as a promising postharvest technology in the cut flower industry

    Effectiveness of WeChat-Group-Based Parental Health Education in Preventing Unintentional Injuries Among Children Aged 0-3: Randomized Controlled Trial in Shanghai

    Get PDF
    BACKGROUND: Unintentional injuries to children are a major public health problem. The online social media is a potential way to implement health education for caregivers in online communities. Using WeChat, a free and popular social media service in China, this study evaluated the effectiveness of social online community-based parental health education in preventing unintentional injuries in children aged 0-3. METHODS: We recruited 365 parents from two community health centers in Shanghai and allocated them into intervention and control groups randomly. Follow-up lasted for one year. The intervention group received and followed their WeChat group and a WeChat official account for dissemination of reliable medical information. The control group received only the WeChat group. RESULTS: Between the intervention and control groups, changes in unintentional injuries (OR = 1.71, 95% CI: 1.02-2.87, P = .04), preventability (β = 0.344, 95% CI: 0.152-0.537, P \u3c .001), daily supervision behavior (β = 0.503, 95% CI: 0.036-0.970, P = .04), and behaviors for preventing specific injuries (β = 2.198, 95% CI: 1.530-2.865, P \u3c .001) were significantly different, and change in first-aid skills for treating a tracheal foreign body were nearly significant (P = .06). CONCLUSIONS: The WeChat-group-based parental health education can reduce the occurrence of unintentional child injuries by improving parents\u27 skills, beliefs, and behaviors. Online social communities promote health education and reduce unintentional injuries among children. TRIAL REGISTRATION: ChiCTR1900020753. Registered on January 17, 2019

    Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus

    Get PDF
    OBJECTIVES: The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. METHODS: Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. RESULTS: A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. CONCLUSION: Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings
    corecore