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OBJECTIVES: The aim of this study was to compare the expression levels of serum miRNAs in diabetic
retinopathy and type 2 diabetes mellitus.

METHODS: Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients
with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without
diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase
chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray
analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched
type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using
the 2-DDCt method.

RESULTS: A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the
miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly
between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did
not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type
2 diabetes mellitus controls.

CONCLUSION: Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the
development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our
findings.
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’ INTRODUCTION

Diabetic retinopathy (DR) is a common microvascular com-
plication of diabetes and the leading cause of legal blindness
among people of working age in the Western world (1). Due to
the increased lifespan of diabetic patients, the prevalence of DR
will continue to increase as a result of the longer duration of
diabetes. However, the molecular mechanisms underlying DR
are not clearly understood. It has been reported that 28.8% of
diabetic patients develop DR, whereas 22.2% of individuals

with a history of diabetes do not develop DR regardless of
glycemic exposure, indicating that genetic factors may play a
role in the development of DR (2).
MicroRNAs (miRNAs) are a class of highly conserved, endo-

genous RNA sequences that regulate the activity of target
mRNAs and control gene expression at the post-transcriptional
level (3). Dysregulated miRNA expression has been identified
as a risk factor for hepatocellular carcinoma and ischemic stroke
(4, 5), and studies have shown that miRNAs play a significant
role in the development of diabetes and its associated compli-
cations (6). For example, circulating levels of miR-126-3p were
found to be lower in patients with type 2 diabetes mellitus
(T2DM) than in healthy controls (7), while circulating miR-146a
levels were significantly elevated in newly diagnosed T2DM
patients compared with healthy controls (8).
To date, few studies have investigated the relationship

between circulating miRNA levels and the development ofDOI: 10.6061/clinics/2017(02)08
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DR (9), with most studies focusing on diabetic rat models or
endothelial cells cultured in high-glucose conditions (10).
Circulating miRNA levels can be used for the early prediction
of DR with high sensitivity and specificity (11), and aberrant
circulating miRNA levels may represent a novel non-invasive
biomarker for the early detection of DR (12). Therefore, the aim
of this study was to compare the circulating miRNA profiles of
DR cases and matched T2DM controls.

’ MATERIALS AND METHODS

Study subjects
The subjects were identified by community health service

centers (CHSCs) under supervision of the Shenzhen Nanshan
Center for Chronic Disease Control in the Nanshan district. All
of the subjects provided informed consent, and the study was
approved by the Ethical Committee of the Shenzhen Nanshan
Center for Chronic Disease Control (2011001). All of the
subjects underwent fundus fluorescein angiography, which
was completed by certified ophthalmologists. The cases were
T2DM patients with DR, and the controls were T2DM patients
without DR. T2DM was diagnosed according to the 2010
guidelines from the American Diabetes Association (13).
Subjects with acute or chronic inflammatory disease, type 1
diabetes, maturity-onset diabetes of the young, or mitochon-
drial diabetes were excluded.
Additionally, age, sex, BMI (body mass index), and family

history of diabetes were recorded. All of the subjects under-
went a general physical examination. Peripheral blood samples
were collected following a 12-hour fast, and glycosylated
hemoglobin (HbA1c), low-density lipoprotein (LDL), high-
density lipoprotein (HDL), total cholesterol (TC), and triglycer-
ide (TG) levels were estimated. TC, LDL, HDL and TG were
measured using standard enzymatic methods and a HITACHI
7080 automatic biochemical analyzer. BMI was calculated as
[weight (kg)/ height (m)2].

miRNA microarrays
The RNA samples from the 5 DR cases and 5 T2DM controls

were analyzed using a mParaflot MicroRNA microarray assay.

Fluorescence images were collected using a laser scanner
(GenePix 4000B, Molecular Devices) and digitized using Array-
Pro image analysis software (Media Cybernetics, Washington,
USA) (Figure 2). The data were analyzed by first subtracting the
background and then normalizing the signals using a LOWESS
filter (Locally Weighted Regression). The results were then
filtered according to the following criteria: 1� p-valueo0.05; 2� at
least a two-fold (|log2|41) difference between the samples
(groups), with an ideal difference X4 (|log2| X2); and 3� two
groups present in the sample and a strong hybridization signal
(average valueX2000). The two identified miRNAs and their
target sequences (50 to 30) are shown in Table 1.

RNA extraction
The serum (400 mL) isolated from each sample was

centrifuged at 6,000 g and at 4oC for 15 min prior to RNA
extraction. miRNAwas isolated from 45 DR and 45 matched
T2DM serum samples using QIAzol Lysis Reagent (Qiagen,
Hilden, Germany) as part of the miRNeasy Serum/Plasma
Kit (Qiagen). Then, 3.5 ml of synthetic miRNA-39 from
Caenorhabditis elegans (cel-microRNA-39) was added to the
extracted miRNA as a spike-in control (1.6 x 108 copies/ml
working solution) before the samples were reverse tran-
scribed to complementary DNA. RNA concentration and
purity were determined using an Agilent 2100 Bioanalyzer
and RNA 6000 Nano/Pico LabChip (Agilent Technologies,
Boeblingen, Germany).

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)

Total RNA extracted from the isolated serum was initially
reverse transcribed using a miScripts II RT Kit (Qiagen,
Germany) according to the manufacturer’s instructions. Each
reverse transcription (RT) reaction contained 1 ml of miScript
Reverse Transcriptase Mix, 4 ml of 5x miScript RT Buffer, 13 ml
of RNase-free water and 2 ml of RNA template. The 20 ml RT
reaction was incubated at 37oC for 1 hour followed by 5 min
at 95oC using an iCycler system (Bio-Rad, Hercules, CA). The
cDNA was diluted 10-fold before being added to each
quantitative polymerase chain reaction (qPCR), with the

Figure 1 - A-B: Comparison of miRNA expression levels (2-DDCt) in the serum of DR patients (n=45) and controls (n=45). Expression levels
of selected miRNAs were analyzed by qRT-PCR.
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spiked-in cel-miR-39 serving as the external control for
normalization. To improve quantification accuracy, each
sample was analyzed in triplicate, and both the melting
curve and amplification plot analyses were used to confirm
the specificity of the reactions. Each 12.5 ml quantitative real-
time PCR reaction contained 6.2 ml of SYBR Green PCR
Master Mix, 1.2 ml of miScript universal primer, 1.2 ml of
specific primer, 2 ml of cDNA and 1.9 ml of RNase-free water.
The amplification protocol consisted of an initial activation
step at 95oC for 15 min, followed by 40 cycles of 94oC for 15 s,
55oC for 30 s, and 70oC for 30 s, and was carried out on the
Mx3005P qPCR system (Stratagene, USA). The levels of
circulating miR-3939 (Hs_miR-3939 miScript Primer Assay,
MS00023688 Qiagen, Germany) and miR-1910-3p (Hs_
miR-1910-3p miScript Primer Assay, MS00016464 Qiagen,
Germany) were analyzed quantitatively using the 2-DDCt (cycle
threshold) method after normalization to the cel-microRNA-39
control (14).

Statistical analysis
Quantitative data are expressed as the mean±standard

deviation, while threshold cycle (Ct) values were determined
using the melting curve analysis to measure the expression of
target miRNAs. Triplicate Ct values were averaged, and the
relative expression level of each miRNAwas calculated using
the comparative threshold cycle (Ct) method (2-DDCt). All of
the miRNA values are expressed as the mean±SD. A paired
t-test was used to evaluate differences in serum miRNA
levels between the two groups. Differences were considered
statistically significant at po0.05. The statistical analysis was
performed using SPSS Statistics Version 18 (SPSS Inc.,
Chicago, USA) and GraphPad Prism 5 (GraphPad Software,
Inc., La Jolla, CA, USA).

’ RESULTS

Characteristics of the included subjects
The demographic characteristics of the study subjects are

presented in Table 2. A total of 45 DR cases and 45 T2DM
controls (matched by age, sex, BMI and duration of diabetes)
were included in the validation stage. There were no significant
differences in family history of diabetes or in levels of TC, HDL,
LDL, TG or HbA1c between the two groups.

Comprehensive miRNA profiling and
qRT-PCR validation
To identify a DR-specific serum miRNA expression profile,

the mParaflot MicroRNA microarray assay was used to
screen for miRNAs that were differentially expressed in 5 DR
cases and 5 T2DM controls. Two miRNAs (miR-3939 and
miR-1910-3p) were higher in DR patients than in T2DM
patients, with |log2| values of 8.58 and 8.59, respectively
(Table 1). We further validated these 2 serum miRNAs in 45
DR cases and 45 matched T2DM controls using RT-qPCR;
however, no statistically significant difference was found
(Figure 1A-B).

’ DISCUSSION

Although miR-3939 and miR-1910-3p appeared to be
differentially expressed in the screening stage, qRT-PCR
did not confirm these results. Consistent with our findings,
Zampetaki et al. did not find a significant association
between plasma miR-146a levels and T2DM (15). However,

Figure 2 - Chip cluster analysis for analyzing the differential
expression of miRNAs between DR cases and T2DM controls.
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a double-blind, parallel design, placebo-controlled rando-
mized clinical trial found that serum miR-27b and miR-320a
levels were independently associated with DR susceptibility
in patients with type 1 diabetes (16). Additionally, Pescador
et al. (17) identified serum miR-15b, miR-138 and miR-376a
as potential predictive biomarkers for obesity and T2DM.
Moreover, Zhang et al. (18) showed that plasma miR-126
levels were a potential biomarker for the early prediction of
T2DM susceptibility. These contradictory results may be due
to differences in study design, sample collection, sample size,
participant ethnicities and detection methods.
Importantly, the biological role of miRNAs in the devel-

opment of DR should be noted. McArthur et al. (19) found
that miR-200b regulates vascular endothelial growth factor
(VEGF)-mediated abnormalities in cultured ECs and strepto-
zotocin (STZ)-induced diabetic rats. Zhuang et al. (20) revealed
that the downregulation of miR-155 attenuates retinal neovas-
cularization via the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway, while Chen et al. (21) suggested that miR-410 inhi-
bits oxygen-induced retinal neovascularization by suppressing
VEGF expression. Additionally, Xiong et al. (22) determined
that 17 miRNAs were dysregulated in the retinas of diabetic
Sprague–Dawley rats, suggesting that miRNAs play a signifi-
cant role in the progression of DR. Moreover, in high-glucose
conditions, miR-152 represses VEGF and TGFb1 expression
in human retinal endothelial cells through post-transcriptional
inhibition of the (pro)renin receptor (23). These studies sug-
gest that miRNAs play a substantial role in the pathogenesis
of DR.
Kong et al. reported that 7 serum miRNAs (miR-9, miR-29a,

miR-30d, miR-34a, miR-124a, miR-146a and miR-375) were ele-
vated in T2DM subjects compared to healthy controls (24),
while Qing et al. (25) revealed that serum miR-21, miR-181c
and miR-1179 levels could be sensitive and cost-effective bio-
markers for the early detection of proliferative DR (PDR). Thus,
further investigation into the circulating levels of miRNAs in
samples obtained from patients with different stage disease is
warranted (10).
Interestingly, Liu et al. (26) identified serum miR-126 as a

biomarker for pre-diabetes and T2DM and found that six
months of treatment (diet control and exercise in subjects

with prediabetes or insulin plus diet control and exercise in
T2DM patients) significantly increased miR-126 levels,
indicating that therapeutic treatments have a significant
effect on circulating miRNA levels. However, the plasma
levels of 13 miRNAs (miR-15a, miR-20b, miR-21, miR-24,
miR-126, miR-191, miR-197, miR-223, miR-28-3p, miR-150,
miR-29b, miR-320 and miR-486) in T2DM subjects were
similar before and after drug treatment (mainly sulfonylur-
eas) (15). Further studies exploring the effects of therapeutic
treatments on circulating miRNA expression levels are
recommended. One limitation of the present study was the
relatively small sample size. Another limitation was that the
use of anti-diabetic medications was not analyzed, and
pharmacological treatments may influence the expression of
circulating miRNAs.

In conclusion, although the serum levels of miR-3939 and
miR-1910-3p differed significantly between DR cases and
T2DM controls in the screening stage, these results were not
validated in the validation stage. Therefore, the above two
circulating miRNAs may not play important roles in the
development of DR. Further research is required to deter-
mine whether the analysis of circulating miRNA levels
holds predictive value for the early detection of DR, and
prospective studies investigating the biological mechanisms
and effects of different therapeutic treatments should be
encouraged.
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