568 research outputs found
Realizability of n-port resistive networks with 2n terminals
In this paper, we consider the realizability problem of n-port resistive networks containing 2n terminals. A necessary and sufficient condition for any real symmetric matrix to be realizable as the admittance of an n-port resistive network containing 2n terminals is obtained. The condition is based on the existence of a parameter matrix. We then focus on a three-port resistive network containing six terminals. A necessary and sufficient condition is derived for any real symmetric matrix to be realizable as the admittance of a three-port resistive network containing six terminals and at most five positive elements, whose topological structure is properly restricted. © 2013 IEEE.published_or_final_versio
Field-free platform for Majorana-like zero mode in superconductors with a topological surface state
Superconducting materials exhibiting topological properties are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. In this letter, we explore the possibility of a field-free platform for generating Majorana zero energy excitations by depositing magnetic Fe impurities on the surface of candidate topological superconductors, LiFeAs and PbTaSe2. We use scanning tunneling microscopy to probe localized states induced at the Fe adatoms on the atomic scale and at sub-Kelvin temperatures. We find that each Fe adatom generates a striking zero-energy bound state inside the superconducting gap, which do not split in magnetic fields up to 8 T, underlining a nontrivial topological origin. Our findings point to magnetic Fe adatoms evaporated on bulk superconductors with topological surface states for exploring Majorana zero modes and quantum information science under field-free conditions
Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.
BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721
Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae)
The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies
Interacting multi-channel topological boundary modes in a quantum Hall valley system
Symmetry and topology play key roles in the identification of phases of
matter and their properties. Both concepts are central to understanding quantum
Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously
broken spin or pseudospin symmetry whose wavefunctions also have topological
properties. Domain walls between distinct broken symmetry QHFM phases are
predicted to host gapless one-dimensional (1D) modes that emerge due to a
topological change of the underlying electronic wavefunctions at such
interfaces. Although a variety of QHFMs have been identified in different
materials, probing interacting electronic modes at these domain walls has not
yet been accomplished. Here we use a scanning tunneling microscope (STM) to
directly visualize the spontaneous formation of boundary modes, within a
sign-changing topological gap, at domain walls between different
valley-polarized quantum Hall phases on the surface of bismuth. By changing the
valley occupation and the corresponding number of modes at the domain wall, we
can realize different regimes where the valley-polarized channels are either
metallic or develop a spectroscopic gap. This behavior is a consequence of
Coulomb interactions constrained by the symmetry-breaking valley flavor, which
determines whether electrons in the topological modes can backscatter, making
these channels a unique class of interacting Luttinger liquids
Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells.
Follicular helper T (TFH) cells are expanded in systemic lupus erythematosus, where they are required to produce high affinity autoantibodies. Eliminating TFH cells would, however compromise the production of protective antibodies against viral and bacterial pathogens. Here we show that inhibiting glucose metabolism results in a drastic reduction of the frequency and number of TFH cells in lupus-prone mice. However, this inhibition has little effect on the production of T-cell-dependent antibodies following immunization with an exogenous antigen or on the frequency of virus-specific TFH cells induced by infection with influenza. In contrast, glutaminolysis inhibition reduces both immunization-induced and autoimmune TFH cells and humoral responses. Solute transporter gene signature suggests different glucose and amino acid fluxes between autoimmune TFH cells and exogenous antigen-specific TFH cells. Thus, blocking glucose metabolism may provide an effective therapeutic approach to treat systemic autoimmunity by eliminating autoreactive TFH cells while preserving protective immunity against pathogens
Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C
An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus megaterium has been used in industry to produce 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. During the mix culture fermentation process, sporulation and cell lysis of B. megaterium can be observed. In order to investigate how these phenomena correlate with 2-KGA production, and to explore how two species interact with each other during the fermentation process, an integrated time-series proteomic and metabolomic analysis was applied to the system. The study quantitatively identified approximate 100 metabolites and 258 proteins. Principal Component Analysis of all the metabolites identified showed that glutamic acid, 5-oxo-proline, L-sorbose, 2-KGA, 2, 6-dipicolinic acid and tyrosine were potential biomarkers to distinguish the different time-series samples. Interestingly, most of these metabolites were closely correlated with the sporulation process of B. megaterium. Together with several sporulation-relevant proteins identified, the results pointed to the possibility that Bacillus sporulation process might be important part of the microbial interaction. After sporulation, cell lysis of B. megaterium was observed in the co-culture system. The proteomic results showed that proteins combating against intracellular reactive oxygen stress (ROS), and proteins involved in pentose phosphate pathway, L-sorbose pathway, tricarboxylic acid cycle and amino acids metabolism were up-regulated when the cell lysis of B. megaterium occurred. The cell lysis might supply purine substrates needed for K. vulgare growth. These discoveries showed B. megaterium provided key elements necessary for K. vulgare to grow better and produce more 2-KGA. The study represents the first attempt to decipher 2-KGA-producing microbial communities using quantitative systems biology analysis
A Piezoelectric Immunosensor Using Hybrid Self-Assembled Monolayers for Detection of Schistosoma japonicum
BACKGROUND: The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1:1500 to 1:60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973. CONCLUSIONS/SIGNIFICANCE: We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory
A Combined Approach of High-Throughput Sequencing and Degradome Analysis Reveals Tissue Specific Expression of MicroRNAs and Their Targets in Cucumber
MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively, and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified. QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the recently developed ‘high throughput degradome sequencing’ approach, 21 target mRNAs of known miRNAs were identified for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging, signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber plants
- …