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Abstract—In this paper, we consider the realizability problem
of n-port resistive networks containing 2n terminals. A necessary
and sufficient condition for any real symmetric matrix to be
realizable as the admittance of an n-port resistive network
containing 2n terminals is obtained. The condition is based on
the existence of a parameter matrix. We then focus on a three-
port resistive network containing six terminals. A necessary and
sufficient condition is derived for any real symmetric matrix to
be realizable as the admittance of a three-port resistive network
containing six terminals and at most five positive elements, whose
topological structure is properly restricted.
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I. INTRODUCTION

Passive network synthesis is an important subject in systems
theory and experienced a “golden era” in the 1930–1970s
[1], [2], [3], [19]. Although there have been many elegant
and useful results in this field, there are still many unsolved
important problems such as minimal realizations.

Recently, a new mechanical element named “inerter” [13],
[26] has been introduced, in which the force applied at
its two terminals is proportional to the relative acceleration
between them. One of the main motivations for the inerter
research is passive mechanical network synthesis. The spring,
damper, and inerter are analogous to the inductor, resistor,
and capacitor, respectively [26]. The impedance (admittance)
of any passive network is positive-real [19] and any positive-
real impedance (admittance) is realizable with a finite number
of resistors (dampers), inductors (springs), and capacitors
(inerters) following the Bott-Duffin procedure [3]. Hence, one
can use dampers, springs, and inerters to construct any passive
mechanical network in a systematic manner. Since mechanical
systems require as few elements as possible, interest in passive
network synthesis has been renewed lately [10], [11], [12],
[14], [15], [16], [17], [18], [30]. In particular, there was an
independent call for a renewed investigation by Kalman [22].

Realization problems of multi-port transformerless networks
have not been fully addressed, not even for the n-port resistive
networks. Noticeably, the investigation on n-port resistive
networks is the first step of solving realization problems of
multi-port transformerless networks and can provide guidance
on further investigations. Besides, several results of minimal
realizations of one-port networks can be derived based on the
results of the n-port resistive networks [14], [15]. Therefore,
as one of the important topics in passive network synthesis,
it is quite essential to have a new endeavor on the realization
problem of n-port resistive networks. For any n-port resistive
network, using the generalized star-mesh transformation [29],
the number of terminals is ranged from n+1 to 2n. Networks
containing n + 1 terminals have been determined [7], [20],
while networks containing n+ p terminals with p > 1 remain
unsolved. Among them, networks containing 2n terminals
form a particularly important class, which is investigated here.

This paper considers the realizability condition for an n-
port resistive network containing 2n terminals. A necessary
and sufficient condition is obtained for the realizability of
any n-port resistive network containing 2n terminals, which
is based on the existence of a parameter matrix and presented
in a unified form. Besides, the values of the elements are also
parameterized. Furthermore, an explicit condition is derived
for a three-port resistive network containing six terminals and
at most five elements in a restricted topological structure.

The remaining part of this paper is organized as follows.
Section II formulates the problem to be solved. In Section III,
the main results are presented. Section III-A provides some
preliminaries; Section III-B derives a necessary and sufficient
condition for the realization of an n-port resistive network with
2n terminals; and Section III-C focuses on the realizability
conditions for a three-port resistive network. The conclusion
is drawn in Section IV.
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II. PROBLEM FORMULATION

Consider an n×n real symmetric matrix in the form of

Y =



y11 y12 y13 · · · y1,n−1 y1n
y12 y22 y23 · · · y2,n−1 y2n
y13 y23 y33 · · · y3,n−1 y3n
...

...
...

. . .
...

...
y1,n−1 y2,n−1 y3,n−1 · · · yn−1,n−1 yn−1,n

y1n y2n y3n · · · yn−1,n ynn


.

(1)
It is well known that Y is necessarily paramount [8] for any

resistive n-port network consisting of only non-negative resis-
tors. Furthermore, it is also known from [28] that paramountcy
is a necessary and sufficient condition for realization when
n ≤ 3. From the results in [4], it can be derived that the
port graph of a realization must be made part of a tree. The
internal vertices (the vertices which are not terminals) can be
eliminated by the generalized star-mesh transformation [29].
Therefore, only the networks whose vertices are all terminals
need to be investigated. In this setting, the number of vertices
(terminals) of the network is from n+1 to 2n. The realization
problem for the n-port resistive network with n+1 vertices has
been solved [5], [6], [7], [20]. The problem with n+ p vertices
where p > 1 was studied in [21], [23], [24], [25]. However,
this problem has not been completely solved.

This paper is concerned with the realization problem of 2n-
terminal resistive networks consisting of only non-negative
resistors. We first consider the general n-port networks, and
then investigate the three-port case. In this study, no negative
resistors or internal vertices are permitted. The basic notations
and theorems in graph theory are referred to [27].

III. MAIN RESULTS

This section contains the main results of this paper, which
is divided into three subsections.

A. Basic Concepts and Results

This subsection presents some definitions and lemmas that
will be used in the following discussion.

Definition 3.1: A connected graph in which each pair of
vertices has one and only one edge is called a complete graph.

It is noted that complete graph was first defined in [7],
which confines the number of vertices to n+ 1, as [7] only
considers the realization of n-port resistive networks contain-
ing n+ 1 vertices. In this paper, we generalize this term to
one for n+ p with p ≥ 1. If the network graph of any n-port
resistive network is regarded as a complete graph, then the
conductance of the resistor in each edge is non-negative with
zero conductance corresponding to an open-circuit element.

Definition 3.2: [9], [28] A real symmetric matrix, with
each main-diagonal element not less than the sum of the
absolute values of all the other elements in the same row,
is called a dominant matrix.

Definition 3.3: [9], [28] A real symmetric matrix, with
each principle minor not less than the absolute value of any

non-principle minor formed by the same rows, is called a
paramount matrix.

It is obvious that when n = 2, the dominant matrix and the
paramount matrix are equivalent.

Definition 3.4: [9] A real m×m symmetric matrix Y is
called a uniformly tapered matrix if its entries satisfy

yi, j − yi, j+1 ≥ yi−1, j − yi−1, j+1

for j ≥ i, where y0,i = yi,m+1 = 0 for all i and i, j = 1,2, . . . ,m.
From the above definition, it can be verified that all the

entries of a uniformly tapered matrix must be non-negative.
Lemma 3.1: [7], [9] A real symmetric matrix can be re-

alized as the admittance of a resistive network, as shown in
Fig. 1, whose port graph is a linear and ordered tree if and
only if it is uniformly tapered.
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Fig. 1. (a) The complete graph for an m-port resistive network with m+1
vertices. (b) The port graph which is a linear and ordered tree.

Lemma 3.2: [7] If the condition of Lemma 3.1 is satisfied,
then the values of the elements of the realization can be
expressed as

gi, j = (yi, j−1 − yi, j)− (yi−1, j−1 − yi−1, j)

for j ≥ i, where y0,i = yi,m+1 = 0 for all i and i, j = 1,2, . . . ,m.
The realization is shown in Fig. 1.

For any k-port resistive network Nk with k + p vertices
where p > 1, its admittance is denoted as Yk. Adding a port to
the network Nk without changing its other properties, a new
network Nk+1 with k+1 ports and k+ p vertices is obtained.
To guarantee the existence of the admittance Yk+1 of Nk+1, the
port graph of Nk+1 also forms a set of trees. The relationship
between Yk and Yk+1 is shown in the following lemma.



Lemma 3.3: [25] If the (k+ 1)th row and column of Yk+1
correspond to the new port of Nk+1 and the other correspon-
dences are unchanged, then the relationship between Yk and
Yk+1 is expressed as

Yk+1 = (Yk u0)+αkαT
k , (2)

where αk = [p1, p2, . . . , pk, pk+1]
T .

It should be noted that if any other row of Yk+1 is used for
the new added port, a similar result can be obtained.

Lemma 3.4: [25] Consider two real symmetric matrices Yk
and Yk+1, which satisfy the relationship (2). Then Yk can be
realized as a k-port resistive network Nk if and only if Yk+1 is
realizable as a (k+1)-port resistive network Nk+1.

B. A Necessary and Sufficient Condition for n-Port Networks

The complete graph of an n-port resistive network with 2n
terminals (vertices) is shown in Fig. 2, where the orientations
of the edges of port graph are arbitrary. Theorem 3.1 presents
a necessary and sufficient condition for any real symmetric
n×n matrix Y in the form of (1) to be realizable as an n-port
resistive network with 2n terminals.

A2i-2 A2i+3

A2i-1

A2i A2i+1

A2i+2

A4 A2n-1

A3

A2 A1

A2n

Fig. 2. The complete graph of an n-port resistive network with 2n terminals,
where the bold line segments correspond to the edges of the port graph.

Theorem 3.1: Consider a real symmetric n×n matrix Y in
the form of (1). It can be realized as an n-port resistive network
N with 2n terminals if and only if there exists a real (2n−
1)× (n−1) matrix P in the form of

P =
[

γ1 γ2 · · · γn−1
]

(3)

with

γk :=
[

p(k)1 p(k)n+1 · · · p(k)k p(k)n+k p(k)k+1 0 · · · p(k)n−1 0 p(k)n

]T

(4)

for 1 ≤ k ≤ n−1 such that

max{− (αi −βi−1)
T (α j −β j), −(αi −βi)

T (α j −β j−1)} ≤ yi j

≤min{−(αi −βi−1)
T (α j −β j−1), −(αi −βi)

T (α j −β j)}
(5)

for 1 ≤ i < j ≤ n and

yii ≥−(αi −βi−1)
T (αi −βi), 1 ≤ i = j ≤ n, (6)

where αT
l is the (2l−1)th row of P with 1 ≤ l ≤ n, β T

m is the
2mth row of P with 1 ≤ m ≤ n−1, and β0 = βn := 0(n−1)×1.

Proof: Since the network graph can be regarded as a
complete graph, the required network can be converted into
one whose port graph is a linear ordered tree by adding new
ports step by step. Hence, the theorem can be proven by
making use of Lemma 3.1, Lemma 3.3, and Lemma 3.4. The
details are omitted for brevity.

Furthermore, the element values are presented in Theo-
rem 3.2.

Theorem 3.2: Consider a real symmetric n×n matrix Y in
the form of (1). If it can be realized as an n-port resistive
network with 2n terminals as shown in Fig. 2, where the
orientations of the ports are from vertex A2k−1 to A2k with
1 ≤ k ≤ n, that is, Y satisfies the condition of Theorem 3.1,
then the values of the conductance of the resistor of each edge
are given by

g2r−1,2s = yr,s +(αr −βr−1)
T (αs −βs), 1 ≤ r ≤ s ≤ n,

g2r−1,2s−1 =−yr,s − (αr −βr−1)
T (αs −βs−1), 1 ≤ r < s ≤ n,

g2r,2s−1 = yr,s +(αr −βr)
T (αs −βs−1), 1 ≤ r < s ≤ n,

g2r,2s =−yr,s − (αr −βr)
T (αs −βs), 1 ≤ r < s ≤ n,

(7)

where αk and βk are obtained from the parameter matrix P as
defined in Theorem 3.1, and gh,l denotes the conductance of
the element connecting vertices Ah and Al for 1 ≤ h < l ≤ 2n.

Proof: This theorem can be proven by using Lemma 3.2
and Theorem 3.1. The details are omitted for brevity.

C. Realizability Conditions for Three-Port Networks

In the previous subsection, a necessary and sufficient con-
dition is given, which is based on the existence of a parameter
matrix. In this subsection, we discuss the three-port resistive
networks such that the realizability condition is given directly
based on the entries of the admittance matrix. It is known
in [31, pg. 372] that any 3×3 paramount admittance can be
realized by a canonical network containing six elements and
five terminals. Hence, this subsection considers the realization
problem of a six-terminal network with at most five elements,
for which the topological structure is properly restricted.

For a 2 × 2 symmetric matrix, the next lemma can be
deduced from [28].

Lemma 3.5: A real symmetric 2×2 matrix Y can be real-
ized as a two-port resistive network with four terminals if and
only if it is paramount. Furthermore, at most four elements
are required.

A third-order symmetric matrix is expressed in the form of

Y =

 y11 y12 y13
y12 y22 y23
y13 y23 y33

 . (8)

Since we discuss the realizability problem of a special class of
this kind of networks, where no internal vertices are permitted,



to better describe the restriction on this kind of networks, the
following definition is introduced.

Definition 3.5: For the complete graph of a resistive net-
work, an edge whose corresponding resistor has positive
conductance is called a positive edge.

The positive edge is defined to distinguish the one corre-
sponding to an open-circuit element.

Definition 3.6: Consider an n-port network whose port
graph contains p parts, where p > 1. If any two parts of the
port graph are directly connected with each other by a positive
edge, then the network is a called terminal well-connected
network.

In what follows, we discuss the realization problem of a
three-port resistive network containing six terminals and at
most five positive elements that is not terminal well-connected.

Lemma 3.6: Consider a third-order real symmetric matrix
Y in the form of (8). If Y is a dominant matrix with at least
two of y12, y13, and y23 being zero, then it can be realizable
as the admittance matrix of a three-port resistive network with
six terminals and at most five positive elements, which is not
terminal well-connected.

Proof: After a proper rearrangement of rows and corre-
sponding columns, Y in (8) can be written in the form of Y1uy
with Y1 being a 2×2 paramount matrix and y ≥ 0. Thus, this
lemma follows immediately from Lemma 3.5.

Lemma 3.7: Consider a third-order real symmetric matrix
Y in the form of (8) that does not satisfy the condition of
Lemma 3.6. If it can be realized as the admittance matrix of
a three-port resistive network with six terminals, which is not
terminal well-connected, then it can be realized by a network
from the one shown in Fig. 3 by judiciously swapping the ports
and switching the polarities of them, where all the elements
denoted by the bold lines always have positive conductance.

A1A2

A3

A4 A5

A6

g2,3

g1,2

g
1,6

g
2,5g1,4

g3,4

g1,3 g2,6

g 2
,4

g
1,5

g5,6

Fig. 3. The graph of a three-port resistive network with six terminals, which
is not terminal well-connected. A1 and A2 are the terminals of port 1; A3 and
A4 are the terminals of port 2; and A5 and A6 are the terminals of port 3.

Proof: Assume that i, j, and k are the integers among
1, 2, and 3. Suppose that there are no positive edges directly
connecting port i and port j. By swapping the ports properly,
it can be assumed that i = 2, j = 3, and k = 1. Moreover, it
is not difficult to show that for port k and port i ( j), there
must be at least one positive edge connecting a terminal of
port k and a terminal of port i ( j), and the other positive
edge connecting the other terminal of port k and the other
terminal of port i ( j). Otherwise, Y will satisfy the condition
of Lemma 3.6. Therefore, at least four positive elements must

be required, and the remaining possible positive edges must
be parallel with the ports or connecting the terminals of port k
and i ( j). After switching the polarities of ports properly, the
network is shown in Fig. 3.

When n = 3, the realizability condition shown in Theo-
rem 3.1 reduces to the existence of

P =

[
p11 p41 p21 0 p31
p12 p42 p22 p52 p32

]T

(9)

such that the following conditions hold:

L1 ≤ y11, L2 ≤ y22, L3 ≤ y33, (10)

max{N(1)
12 ,N(2)

12 } ≤ y12 ≤ min{M(1)
12 ,M(2)

12 }, (11)

max{N(1)
13 ,N(2)

13 } ≤ y13 ≤ min{M(1)
13 ,M(2)

13 }, (12)

max{N(1)
23 ,N(2)

23 } ≤ y23 ≤ min{M(1)
23 ,M(2)

23 }, (13)

where L1 = p11 p41 + p12 p42 − (p11 p11 + p12 p12),
L2 = p21 p41 + p22 p42 + p22 p52 − (p21 p21 + p22 p22 + p42 p52),
L3 = p32 p52 − (p31 p31 + p32 p32), N(1)

12 = p12 p52 −
(p11 p21 + p12 p22), N(2)

12 = p11 p41 + p21 p41 + p12 p42 +
p22 p42 − (p41 p41 + p11 p21 + p42 p42 + p12 p22),
M(1)

12 = p11 p41 + p12 p42 − (p11 p21 + p12 p22), M(2)
12 =

p21 p41 + p22 p42 + p12 p52 − (p11 p21 + p12 p22 + p42 p52),
N(1)

13 =−(p11 p31+ p12 p32), N(2)
13 = p31 p41+ p12 p52+ p32 p42−

(p11 p31 + p12 p32 + p42 p52), M(1)
13 = p12 p52 − (p11 p31 +

p12 p32), M(2)
13 = p31 p41 + p32 p42 − (p11 p31 + p12 p32),

N(1)
23 = p31 p41 + p32 p42 − (p21 p31 + p22 p32),

N(2)
23 = p22 p52 + p32 p52 − (p21 p31 + p22 p32 + p52 p52),

M(1)
23 = p31 p41+ p22 p52+ p32 p42−(p21 p31+ p22 p32+ p42 p52),

and M(2)
23 = p32 p52 − (p21 p31 + p22 p32). By Theorem 3.2,

the values of the conductances gi, j can be calculated
as g1,2 = y11 − L1, g3,4 = y22 − L2, g5,6 = y33 − L3,
g1,3 = M(1)

12 − y12, g2,4 = M(2)
12 − y12, g1,4 = y12 − N(1)

12 ,
g2,3 = y12 − N(2)

12 , g1,5 = M(1)
13 − y13, g2,6 = M(2)

13 − y13,
g1,6 = y13 − N(1)

13 , g2,5 = y13 − N(2)
13 , g3,5 = M(1)

23 − y23,
g4,6 = M(2)

23 − y23, g3,6 = y23 −N(1)
23 , and g4,5 = y23 −N(2)

23 .
Definition 3.7: A row of a matrix Y is marginally dominant

if the elements of the row satisfy yii =
n
∑

j=1, j ̸=i
|yi j|.

Theorem 3.3: A real symmetric matrix Y in the form of
(8) can be realized as the admittance matrix of a three-port
resistive network with six terminals and at most five positive
elements, which is not terminal well-connected, if and only if
Y is dominant and one of the following three conditions holds:

1. at least two of y12, y13, and y23 are zero;
2. one of y12, y13, and y23 is zero, and at least two of the

three rows are marginally dominant;
3. one of y12, y13, and y23 is zero, denoted by yi j = 0,

and only one of the three rows is marginally dominant,
which is either the ith row or the jth row.

Proof: Necessity. Consider a real symmetric matrix Y
in the form of (8). If Y does not satisfy the condition of
Lemma 3.6, then by Lemma 3.7 it can be realized by the



network shown in Fig. 3 via judiciously swapping the ports
and switching the polarities of them, where all the elements
denoted by the bold lines have positive conductance, and there
is at most one positive element among the edges denoted by
the solid lines. In this figure, A1, A3, and A5 are at higher
potentials; A2, A4, and A6 are at lower ones. It suffices to
consider the network shown in Fig. 3 because the admittances
of other cases can be obtained from the network in this figure
by proper arrangement of rows and corresponding columns
and multiplication of the rows and columns with −1, which
does not violate the condition.

Since Y can be realized by the network in the form of Fig. 3,
there must exist a parameter matrix P in the form of (9) such
that (10)–(13) hold. It is noted that g3,5 = g3,6 = g4,5 = g4,6 = 0,
which is equivalent to

N(1)
23 − y23 = 0, (14)

N(2)
23 − y23 = 0, (15)

M(2)
23 − y23 = 0, (16)

M(1)
23 − y23 = 0. (17)

This implies that

p22 = p42 = p52 ̸= 0, p31 p41 = 0, y23 =−p21 p31.

For the edges represented by the lighter lines in Fig. 3, it
suffices to discuss the following two cases.

Case 1: g1,3 = g2,4 = g1,5 = g2,6 = 0. In this case,

M(1)
12 − y12 = 0, (18)

M(2)
12 − y12 = 0, (19)

M(1)
13 − y13 = 0, (20)

M(2)
13 − y13 = 0. (21)

Together with g1,6,g2,5,g1,4,g2,3 > 0, it can be derived that Y
is dominant and at least two of the three rows are marginally
dominant.

Case 2: One of g1,3, g2,4, g1,5, and g2,6 is positive. It can
be derived that Y is dominant, one of y12, y13, and y23 is
zero, denoted by yi j = 0, and only one of the three rows is
marginally dominant, which is either the ith row or the jth
row.

Sufficiency. Suppose that Y in the form of (8) satisfies the
given condition. If it is dominant and satisfies Condition 1,
then it must be realizable as the admittance of the required
network by Lemma 3.6.

If it is dominant and satisfies Condition 2, then after proper
arrangement of the rows and the corresponding columns, and
multiplication of the rows and the corresponding columns with
−1, the matrix satisfies y23 = 0, y12 > 0, and y13 > 0. Choose
the parameter matrix P such that its elements satisfy

p31 = 0, p11 = p21, 0 < p11 p41 < p41 p41,

p12 = p32, p22 = p42 = p52, 0 < p12 p22 < p22 p22,

and

p11 p41 − p11 p11 = y12,

p12 p22 − p12 p12 = y13.

It is obvious that this choice is always possible. It can
be verified that (10)–(13) hold. Furthermore, g1,3 = g2,4 =
g1,5 = g2,6 = g3,5 = g4,6 = g3,6 = g4,5 = 0, g1,4 = p11 p41 > 0,
g2,3 = −p11 p41 + p41 p41 > 0, g1,6 = p12 p22 > 0, and g2,5 =
−p12 p22 + p22 p22 > 0. Since g1,2 = y11 − L1 = y11 − |y12| −
|y13|, g3,4 = y22−L2 = y22−|y12|−|y23|, and g5,6 = y33−L3 =
y33 −|y13|− |y23|, one has g1,2,g3,4,g5,6 ≥ 0, and at least two
of them equal zero.

If it is dominant and satisfies Condition 3, then after proper
arrangement of the rows and the corresponding columns, and
multiplication of the rows and the corresponding columns with
−1, the matrix satisfies y23 = 0, y12 > 0, y13 > 0, and the third
row is marginally dominant. Choose the parameter matrix P
such that its elements satisfy

p31 = 0, 0 < p21 p41 < p11 p41 < p41 p41,

p12 =p32, p22 = p42 = p52, 0 < p12 p22 < p22 p22,

and

p21 p41 − p11 p21 = y12,

p12 p22 − p12 p12 = y13,

p21 p41 − p21 p21 = y22,

p11 p41 − p11 p11 + y13 = y11.

It is obvious that this choice is always possible. It can be
verified that (10)–(13) hold. Furthermore, g2,4 = g1,5 = g2,6 =
g3,5 = g4,6 = g3,6 = g4,5 = g1,2 = g3,4 = g5,6 = 0, g1,3 =
p11 p41 − p21 p41 > 0, g1,4 = p21 p41 > 0, g2,3 = −p11 p41 +
p41 p41 > 0, g1,6 = p12 p22 > 0, and g2,5 =−p12 p22+ p22 p22 >
0.

IV. CONCLUSION

This paper has investigated the realizability problem of an n-
port resistive network containing 2n terminals. A general result
was derived, which is a necessary and sufficient condition
for any real symmetric matrix to be realizable as an n-
port resistive network containing 2n terminals. The condition
is in a unified form, obtained based on the existence of a
parameter matrix. To make the condition be directly dependent
on the entries of the given matrix, the case of n = 3 was
discussed in detail. A new concept named the terminal well-
connected network was introduced. Consequently, a necessary
and sufficient condition for any real symmetric matrix to
be realizable as the admittance of a three-port six-terminal
resistive network, which is not terminal well-connected and
contains at most five positive elements, was derived.
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