1,586 research outputs found

    Pseudo-Separation for Assessment of Structural Vulnerability of a Network

    Full text link
    Based upon the idea that network functionality is impaired if two nodes in a network are sufficiently separated in terms of a given metric, we introduce two combinatorial \emph{pseudocut} problems generalizing the classical min-cut and multi-cut problems. We expect the pseudocut problems will find broad relevance to the study of network reliability. We comprehensively analyze the computational complexity of the pseudocut problems and provide three approximation algorithms for these problems. Motivated by applications in communication networks with strict Quality-of-Service (QoS) requirements, we demonstrate the utility of the pseudocut problems by proposing a targeted vulnerability assessment for the structure of communication networks using QoS metrics; we perform experimental evaluations of our proposed approximation algorithms in this context

    Structural and infrared absorption properties of self-organized InGaAs GaAs quantum dots multilayers

    Get PDF
    Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector

    Determinants of postnatal spleen tissue regeneration and organogenesis

    Get PDF
    Abstract The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases

    Knowledge Driven Intelligent Survey Systems for Linguists

    Get PDF
    This work was supported the EU Marie Curie K-Drive project (286348).Postprin

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Clinical significance of side population in ovarian cancer cells

    Get PDF
    Recently, accumulating evidence has suggested that tumors, including ovarian cancer, are composed of a heterogeneous cell population with a small subset of cancer stem cells (CSCs) that sustain tumor formation and growth. The emergence of drug resistance is one of the most difficult problems in the treatment of ovarian cancer, which has been explained recently by the potential of CSCs to have superior resistance against anti-cancer drugs than conventional cancer cells. In this study, we expanded this line of study to examine whether this phenomenon is also observed in clinical specimens of ovarian cancer cells. In total we could analyze 28 samples out of 60 obtained from ovarian cancer patients. The clinical samples were subjected to testing of the expression of side population (SP) as a CSC marker, and according to the presence of SP (SP+) or absence of SP (SPβˆ’), clinicopathological significances were analyzed. Although there was no statistical significance, there were more SP+s in recurrent cases as well as in ascitic and peritoneal dissemination than in primary tumor of the ovary. There was no correlation between SP status and FIGO staging. In 19 cases of those who could be followed more than 6Β months from initial therapy, there were 8 cases of recurrence or death from disease, and all of these were SP+. On the other hand, in 11 cases of disease-free survivors, 6 were SP+. There was a significant difference in prognosis between SP+ and SPβˆ’ (pΒ =Β 0.017). Although this study was limited, it revealed that SP could be contained more in recurrent or metastatic tumors than in primary tumors, and also that the presence of SP could be a risk factor of recurrence in ovarian cancer. Therefore, a novel therapeutic strategy targeting SP could improve the prognosis of ovarian cancer

    Electroluminescent Characteristics of DBPPV–ZnO Nanocomposite Polymer Light Emitting Devices

    Get PDF
    We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO) nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene) (DBPPV). The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV–ZnO (3:1 wt%) before annealing (1.78 cd/A) and after annealing (2.45 cd/A) having a brightness 643 and 776 cd/m2at a current density of 36.16 and 31.67 mA/cm2are observed, respectively. Current density–voltage and brightness–voltage characteristics indicate that addition of ZnO nanoparticles can facilitate electrical injection and charge transport. The thermal annealing is thought to result in the formation of an interfacial layer between emissive polymer film and cathode

    J-Integral Calculation by Finite Element Processing of Measured Full-Field Surface Displacements

    Get PDF
    Β© 2017 The Author(s)A novel method has been developed based on the conjoint use of digital image correlation to measure full field displacements and finite element simulations to extract the strain energy release rate of surface cracks. In this approach, a finite element model with imported full-field displacements measured by DIC is solved and the J-integral is calculated, without knowledge of the specimen geometry and applied loads. This can be done even in a specimen that develops crack tip plasticity, if the elastic and yield behaviour of the material are known. The application of the method is demonstrated in an analysis of a fatigue crack, introduced to an aluminium alloy compact tension specimen (Al 2024, T351 heat condition)

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore