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Abstract Unsupervised Domain Adaptation (UDA) aims to transfer domain knowl-
edge from existing well-defined tasks to new ones where labels are unavailable.
In the real-world applications, as the domain (task) discrepancies are usually un-
controllable, it is significantly motivated to match the feature distributions even if
the domain discrepancies are disparate. Additionally, as no label is available in the
target domain, how to successfully adapt the classifier from the source to the target
domain still remains an open question. In this paper, we propose the Re-weighted
Adversarial Adaptation Network (RAAN) to reduce the feature distribution diver-
gence and adapt the classifier when domain discrepancies are disparate. Specifically,
to alleviate the need of common supports in matching the feature distribution, we
choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and
reformulate it to a minimax objective function. Utilizing this, RAAN can be trained
in an end-to-end and adversarial manner. To further adapt the classifier, we propose
to match the label distribution and embed it into the adversarial training. Finally,
after extensive evaluation of our method using UDA datasets of varying difficulty,
RAAN achieved the state-of-the-art results and outperformed other methods by a
large margin when the domain shifts are disparate.
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1 Introduction

Recent developments in Deep Neural Networks (DNN) have yielded state-of-the-
art results from supervised learning applications in computer vision [11][35][19].
However, the success of DNN requires a large amount of well annotated training
data which is not always feasible to perform manually. Therefore, this has acted as
a driver to transfer knowledge from datasets for which labels are well-defined. The
Domain Adaptation (DA) problem [33] was proposed in this context where the data
distribution between the target domain (a few of labels are available) and the source
domain (well-annotated labels) varies so that the discriminative features and the
classifiers in the source domain cannot be transferred to the target domain[33][41].
Under this regime, unsupervised domain adaptation (UDA) is the most challenging
problemwhere no label information in the target domain is available. To successfully
conduct adaptation between domains in UDA, two essential problems are required to
be addressed, including matching the feature distribution and adapting the classifier
from source to target domains.

Since DNN based methods exhibit strong capacity to extract transferable feature
representations among datasets, research has been conducted investigating measure-
ments to estimate distribution divergence of deep features among domains and the
relevant methods to minimize them. As an un-biased estimate of distribution diver-
gence, Maximum Mean Discrepancy (MMD) [16] has been employed in various
DNN based methods for UDA [23][26][27][38][42][39]. More recently, inspired by
the best-performing adversarial training in generative models, the state-of-the-art
UDAmethods utilize the Jenson-Shannon (JS) divergence or the more generalized f-
divergence [32] implemented using DNN to estimate the distribution divergence[12]
[13] [37] [22] [4].

However, both the MMD and f-divergence based methods require that feature
distributions of the source and target domain share a common support. We argue that
this is an unrealistic condition which can rarely be met in the real-world adaptation
tasks, since the domain discrepancies are caused by a variety of factors that are
difficult to control [8], such as light conditions, acquisition devices or even from
different image formats e.g., RGB and HHA. From this point of view, these methods
fail to adapt between domains once their distributions do not have significant overlap.
More recently, to alleviate the need of a common support in UDA, optimal transport
(OT) based methods have been proposed to match the source and target feature
distributions by minimizing the global transportation efforts [9] [8]. However, OT
based methods have not been formalized and embedded into an end-to-end pipeline
to train DNNs, which limits its application to large-scale UDA problems.

In UDA, besides selecting a good divergence measure of the marginal feature
distribution, it is essential to adapt the classifier between domains. Long et.al [25][26]
and Courty.et.al both [8] proposed to match the joint distribution of feature and label
by regarding the transductive features from the final layer’s activation map of the
DNN as an approximation of the target domain labels. In fact, how to match the
feature distribution and meanwhile adapt the classifier is still an open question in
UDA.
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Fig. 1 RAAN’s architecture: first, in the source domain, the DCNN Ts and the classifier CLS
are trained to extract discriminative features from images xs labeled by ys by minimizing the
cross entropy loss LCE . Second, to adapt the classifier by matching the label distribution between
domains, the re-weighted source domain label distribution PRe(Y s ) is computed by transforming
a variable α using the soft-max function. Then it is straightforward to obtain the ratio vector as
follows: β = PRe (Y s )

Ps (Y s )
. To extract transferable features for target domain images xt , the target

domain DCNN Tt , domain discriminator D and the estimated density ratio vector β play the
following adversarial game: β and D tries to discriminate whether features is from the target or
source domain, while Tt tries to confuse D and β.

In this paper, we propose aRe-weightedAdversarial AdaptationNetwork (RAAN)
for UDA to reduce disparate domain discrepancies and adapt the classifier. More
specifically, there are two main contributions:

1. To match feature distributions when domains discrepancies are disparate, we train
a domain discriminator network togetherwith the conventional deep convolutional
neural network (DCNN) in an adversarial manner to minimize the OT based EM
distance. Compared with other methods adopting geometry-oblivious measures,
RAAN can better reduce large feature distribution divergence.

2. To help adapt the classifier in UDA, we propose to match the label distribution
by estimating a re-weighted source domain label distribution so that it can be
similar to the unknown target label distribution. In addition, we embed it into
the procedure of minimizing the EM distance during the end-to-end adversarial
training procedure. This not only adapts the classifier but also helps match the
marginal feature distribution.

Finally, our proposed RAAN is evaluated by conducting a series of experiments
using datasets with different domain distribution divergence.
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2 Related Work

In this section, we review the state-of-the-art methods in reducing the domain dis-
tribution divergence for the UDA problem.

2.1 Matching Feature Distribution using Adversarial Training

JS-divergence based methods are the best-performing techniques for measuring
the divergence of feature distributions in deep adaptation networks [22] [37] [4].
Although it is not a new statistical measure, the JS divergence or the f-divergence
loss is implemented by a mini-batch approach in the DNN trained in an adversarial
manner [32] [15]. DANN [13] may be the first to add a domain classifier, with the
aim of extracting not only discriminative features for the main classification task, but
also indistinguishable ones for the domain classifiers. The adversarial loss of DANN
is implemented by directly maximizing the domain classification loss and reversing
the gradient in the back-propagation. DRCN [14] utilized the same approach but
added another loss function to minimize the reconstruction error of the data samples
between domains. More recently, ADDA [37] designed two separate discriminative
networks (one for each domain) to extract useful features for the main classification
task. The domain discriminator network is added so that the target network and
the domain discriminator network can compete with each other until the target and
source domain features cannot be distinguished.

Inspired by the good performance of adversarial training in generative models,
some methods generate new images that are transferable in both domains. Co-GAN
[22] may be the first to design two Generative Adversarial Nets (GANs) to generate
diverse images for both source and target domain. Although Co-GAN achieved good
performance in adapting domains having a small discrepancy, it cannot work well
when the domain shifts are disparate [37]. In contrast to Co-GAN, the pixel-level
domain adaptation network (pixelDA) proposed in [4] uses one generative network
to generate images indistinguishable from source and target domains. In addition,
constraints on pixel level similarity between the generated and source images are
utilized. In fact, the ability of generative model based methods for UDA having large
discrepancy is still under investigation.

2.2 Matching Feature Distribution using OT

The most closely related approach to ours for reducing the distribution divergence is
through solving the OT directly, as described in [9][8]. However, this implementation
has not been included into the end-to-end learning framework and only the stand-
alone De-Caffe features [11] from the DANN network are used. Instead, RAAN
utilizes the domain discriminator network with the objective of minimizing the dual
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formulation of theEarth-Mover(EM) distance. From this perspective, theWasserstein
GAN [2] [17] is a special case to minimize the dual of EM distance, however, their
ultimate goal is to generate the images. To the best of author’s knowledge, RAAN
may be the first to learn domain invariant features for UDA utilizing the OT based
EM distance in a DNN. Note that the concurrent work [34] also adopted the EM
distance as the divergence measurement in UDA, however, we are handling the more
generalized scenario with unbalanced datasets.

2.3 Instance Re-weighting Scheme

The instance re-weighting scheme is well documented in the literature [7] [43], for
example in the instance re-weighting of the bias in the discriminative models [42],
or in the causal inference regime [44]. In DNN based methods for UDA, Yan.et.al
[42] recently proposed to learn the bias of the source domain instances by the
classification expectation maximization (CEM) algorithms using the MMD as the
divergence measure[6].

In contrast, RAAN differs from [42] as the instance re-weighting is achieved by
estimating the density ratio vector of label distributions between domains. Specif-
ically, the estimation of the density ratio vector is embedded into the adversarial
training via back-propagation. Finally, we also argue and explain why matching the
label distribution helps to adapt the classifier in UDA.

3 Method

First, we introduce the notation and formulate our problem. Suppose we are given a
ncls-class source domain set Ds = {(xsi , y

s
i )}

ns
i=1 including ns images xsi labeled by

ysi and an unlabelled ncls-class target domain set
Dt = {(xtj )}

nt
j=1 composed of nt images xtj . The random variables representing the

image and label in general are denoted as X andY . As illustrated in Figure 1, RAAN
is composed of three networks, specifically two conventional L-layer DCNNs Ts and
Tt and a domain discriminator network D.

The first objective of RAAN is to adapt the classifier, which is difficult without
the target domain labels. However, as the label is a low-dimensional and discrete
variable, it is fairly straightforward to match between domains and we argue that
this can assist with the adaptation of classifiers (see reasons in section 3.2). With
this intuition, a re-weighted source domain label distribution PRe(Y s) is obtained by
mapping a variable α ∈ Rncls by the soft-max function. Then estimation of α aims
to ensure that PRe(Y s) is similar to the unknown target one Pt (Y t ). Consequently,
the density ratio vector can be denoted as β ∈ Rncls , with its (ys)th element β(ys)
calculated by β(ys) = PRe (Y s=ys )

Ps (Y s=ys ) . As β can be directly computed based on α, in the
following paper, we regard β as the variable under estimate.
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The second objective of RAAN is to learn the domain invariant transformations
Ts and Tt so that the disparate divergence between marginal feature distributions
Pt (T l=L

t (X t )) and Ps(T l=L
s (Xs)) is reduced. For brevity, we denote Tt and Ts to

replace T l=L
t and T l=L

s respectively in the following. Given the images and labels in
the source domain {xs, ys} ∈ Ds , with the aim of extracting discriminative features
Ts(xs) for the classification, it is straight-forward to train the classifier CLS and Ts
by minimizing the cross-entropy loss LCE as follows:

min
Ts,CLS

LCE . (1)

To obtain transferable features Tt (xt ) without labels, Tt is trained by playing an
adversarial game with the domain discriminator network D and the ratio vector
β so that the divergence between the re-weighted feature distribution in the source
domain β(ys)Ps(Ts(xs)) and the target domain Pt (Tt (xt )) is reduced. Additionally, to
better reduce the divergence between disparate domains, the OT-based EM distance
is reformulated in the adversarial manner, with more details shown in section 3.1.
Specifically, RAAN is trained in the following adversarial manner, where D with
the help of β aims to discriminate whether features are from source or target domain,
while Tt tries to confuse them. Based on the discriminator loss LRe

adv
, the following

objective function can be obtained:

min
Tt

max
D,β
LRe

adv . (2)

In fact, besides helping the adaptation of the classifier, matching the label distri-
butions also eases the difficulty of matching the marginal feature distribution. The
possible reason may be: if we assume that the feature generation processes are the
same between domains, that is Ps(T s(Xs)|Y s) = Pt (T t (X t )|Y t ),

thenPRe(Y s) = Pt (Y t ) helpsmatch themarginal feature distributionsPs(T s(Xs)) =

Pt (T t (X t )).
In section 3.1, to match the marginal feature distributions between domains, an

OT based EM distance is introduced and implemented in an adversarial manner
in RAAN. Then in section 3.2, we propose to match label distributions between
domains and embed it in the adversarial training. We also explain why this helps to
adapt the classifier and meanwhile to match marginal feature distributions. Finally
in section 3.3, we formulate the final objective function of RAAN.

3.1 Optimal Transport in Adversarial Training

Suppose that the empirical distributions of source and target domain features are
denoted as µs and µt respectively as follows:

µs =

ns∑
i

psi δTs (xsi ), µ
t =

nt∑
j

ptjδTt (xtj ) (3)
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where δTs (xsi ) and δTt (xtj ) are the Dirac functions at location Ts(xsi ) and Tt (x
t
j ) and

psi and ptj are their probability masses. Then, the joint probabilistic coupling, or the
transportation plan between feature distributions in source and target domains can
be defined as γ with the marginals µs and µt . In the discrete version, the set of
probabilistic couplings B can be defined as the following:

B =
{
γ ∈ (R+)ns×nt |γ1nt = µ

s, γT1ns = µ
t
}
[9]. (4)

In general, to reduce feature distribution divergence, OT based methods first
estimate the optimal transportation plan between two distributions and then learn
the feature transformation to minimize the cost of such a plan. Therefore, we first
define the metric J(µs, µt ) in equation(5) to measure the total cost of transporting
probability masses from target to source domains,

J(µs, µt ) = 〈 γ,C〉F, with γ ∈ B, (5)

where C is the distance matrix whose (i, j)th element is defined by the distance cost
function c(Ts(xsi ),Tt (x

t
j )) between features. The (i, j)th element γ(i, j) indicates how

much mass is moved from Tt (xtj ) to Ts(x
s
i ), and F is the Frobenius dot product.

Subsequently for brevity, we drop the index i, j to represent xsi , xtj as xs, xt . After
that, the OT γ0 can be estimated byminimizing the cost J(µs, µt ) in equation(6), with
the optimal transportation cost or the well-known EM distance defined by W(µs, µt )
in equation(7) [20]. Finally, assuming the ideal source domain features Ts(xs) are
available, to learn the transferable features in target domains, it is intuitive to train
the DCNN transformation Tt under the objective of minimizing the EM distance
W(µs, µt ), as shown in (8).

γ0 = argmin
γ∈B

J(µs, µt )[9] (6)

W(µs, µt ) = min
γ∈B

J(µs, µt ) (7)

min
Tt

W(µs, µt ) (8)

To avoid using linear programs or iterative algorithms to compute the constraint
of γ in equation(4), the dual formulation of W(µs, µt ) is utilized in equation(9) and
(10) (following equation(5.3) in [40]), considering the capability of batch-wise back-
propagation in DNN. More specifically, we use the domain discriminator network
D and its variant D̂ as two dual functions in the following:

W(µs, µt ) = max
D D̂

Ladv, where

Ladv = E
xs∼Ps (Xs )

D(Ts(xs)) + E
xt∼Pt (X t )

D̂(Tt (xt )) (9)

s.t .D(Ts(xs)) + D̂(Tt (xt )) ≤ c(Ts(xs),Tt (xt )). (10)
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In this paper, we choose the following distance cost function c(Ts(xs),Tt (xt )) =
‖Ts(xs) − Tt (xt )‖ for reasons of computational efficiency and permitting gradient
measurements, however, this does not infer that it is the only function that could be
selected. According to the constraint (10), the best function that D̂ has to be is −D,
as c(Ts(xs),Tt (xt )) is defined to be non-negative. In this way, the constraint in (10) is
equivalent to ensuring that D is a 1-Lipschitz function, or alternatively its gradient
norm is smaller than 1. Therefore, if we use (9) and (10) in (8) to replace the EM
distance, the DCNN transformation Tt and the domain discriminator networkD can
be trained based on the mini-max objective function in (11),

min
Tt

W(µs, µt ) = min
Tt

max
D
Ladv,where

Ladv =
∑

(xs,ys )∼Ps (X,Y s )

D(Ts(xs))Ps(Ts(xs)|ys)Ps(ys)

− E
xt∼Pt (X t )

D(Tt (xt ))

s.t .‖ 5Tt (xt ) D(Tt (x
t ))‖2 ≤ 1,

‖ 5Ts (xs ) D(Ts(x
s))‖2 ≤ 1. (11)

3.2 Adapting the Classifier by Label Distribution Matching

Although OT based EM distance is utilized to match feature distributions Ps(Ts(Xs))

and Pt (Tt (X t )), we argue that it is not enough to successfully adapt the classi-
fier from source to target domain, since Ps(Ts(Xs)) = Pt (Tt (X t )) does not infer
Ps(Y s |Ts(Xs)) = Pt (Y t |Tt (X t )). However, according to Bayes rule in (12), instead
of matching Pt (Y t |Tt (X t )) and Ps(Y s |Ts(Xs)) directly, we can learn Tt under the
objective of matching Ps(Ts(Xs)|Y s)Ps(Y s) and Pt (Tt (X t )|Y t )Pt (Y t ).

P(T (X)|Y )P(Y ) ∝ P(Y |T (X)). (12)

In fact, as no label information in the target domain Pt (Y t ) is available, it is non-
trivial to directly match Pt (Tt (X t )|Y t )Pt (Y t ) and Ps(Ts(Xs)|Y s)Ps(Y s). However,
as the label is a low-dimensional and discrete variable whose distribution is well-
defined, it is more straightforward to match label distributions between domains
compared with its conditional variant. Therefore, we take a step back and propose to
estimate the re-weighted source domain label distribution PRe(Y s) so that it is similar
to the unknown Pt (Y t ) in the target domain. In fact, we argue that matching the label
distributions between two domains can also help the adaptation of the classifier,
because at least part of Pt (Tt (X t )|Y t )Pt (Y t ) and Ps(Ts(Xs)|Y s)PRe(Y s) is matched.
Based on such an assumption, since the EM-distance has been adopted to match
Pt (Tt (X t ) and Ps(Ts(Xs), we propose to embed the re-weighted label distribution
PRe(Y s) into the procedure of matching the marginal feature distribution Ps(Ts(Xs))

and Pt (Tt (X t )) in the adversarial training.
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To estimate the re-weighted label distribution PRe(Y s), the following constraint
should be considered:

ncls∑
i=1

PRe(Y s = yi) = 1, (13)

where, yi indicates the label of the ith class. However, this constraint has already
been considered in the implementation using the softmax function.

Finally, to estimate the re-weighted label distribution, if we directly replace the
Ps(Y s) by PRe(Y s) in the mini-max objective function Ladv in (11), a new one
LRe

adv
is obtained in (14), where the network D, Tt and the ratio vector β are trained

in the following manner: D and β are trained in a cooperative way to estimate the
EM-distance, while Tt is trained to minimize the EM-distance. From the perspective
of implementation, β can be regarded as assigning different significance to images
xs in the source domain, so that the mini-batches in the two domains are sampled
from similar distributions, which helps D and Tt to focus on matching Ps(Ts(xs))
and Pt (Tt (xt )).

min
Tt

max
D,β
LRe

adv, where

LRe
adv =

∑
(xs,ys )∼Ps (Xs,Y s )

D(Ts(xs))Ps(Ts(xs)|ys)PRe(ys)

− E
xt∼Pt (X t )

D(Tt (xt ))

=
∑

(xs,ys )∼Ps (Xs,Y s )

D(Ts(xs))Ps(Ts(xs)|ys)β(ys)Ps(ys)

− E
xt∼Pt (X t )

D(Tt (xt ))

= E
(xs,ys )∼Ps (Xs,Y s )

β(ys)D(Ts(xs)) − E
xt∼Pt (X t )

D(Tt (xt ))

s.t.‖ 5Tt (xt ) D(Tt (x
t ))‖2 ≤ 1,

‖ 5Ts (xs ) D(Ts(x
s))‖2 ≤ 1. (14)

3.3 Optimization in RAAN

As shown in Figure 1, RAAN is proposed to jointly minimize the cross entropy loss
of the source domain samples and to reduce the divergence of the extracted feature
distributions. First, we define the empirical estimate of the loss function LRe

adv
as

follows:

LRe
adv =

1
ns

ns∑
i=1
D(β(ysi )Ts(x

s
i )) −

1
nt

nt∑
j=1
D(Tt (xtj )). (15)
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Fig. 2 DA datasets: (a) four hand-written digit datasets; (b) cross-modality dataset including RGB
and RGB-depth images.

Following on from the idea of controlling the 1-Lipschitz function of the domain
discriminator network D [17], we explicitly constrain the gradient norm penalty
term as follows:

Lgp = ‖ 5T̂(x̂) L
Re
adv − 1‖2, (16)

where T̂ (x̂) is the weighted interpolation samples of Tt (xt ) and Ts(xs). In summary,
the total objective function in RAAN is formulated in the following adversarial
manner:

min
Tt,D,β

− LRe
adv + λgpLgp + λreg‖β‖2, (17)

min
Tt
−

1
nt

nt∑
j=1
D(Tt (xtj )), (18)

min
Ts,CLS

1
ns

ns∑
i=1
LCE (CLS(Ts(xsi )), y

s
i ), (19)

where LCE (CLS(Ts(xsi )), y
s
i ) indicates the cross-entropy function with classifier

CLS, feature vector Ts(xsi ) and its label ysi . Note that to train the networks stably,
the source domain DCNN Ts is trained first while Tt and D are trained to match the
feature distributions between Tt (xt ) and Ts(xs) in an adversarial manner. In addition,
to stably learn the ratio vector, we add the L2-norm of β as the regularization term in
(17). λgp and λreg indicate the regularization weights of the gradient penalty term
and the L2-norm of the ratio vector respectively.
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4 Experiment and Results

In this section, RAAN is evaluated in two UDA tasks, specifically one between
hand-written digit datasets and the other between cross-modality datasets. For all
the experiments, RAAN achieves competitive results compared with the state-of-the-
artmethods and outperforms themby a largemarginwhen the distribution divergence
is large between domains.

Table 1 Recognition rates of adapting hand-written digit datasets; RAAN(+) andRAAN(-) indicate
with and without the re-weighting scheme.

Methods MNIST to USPS USPS to MNIST SVHN to MNIST
Source Only 0.725 0.612 0.593

Gradient Reversal[13] 0.771 0.730 0.739
Domain Confusion [38] 0.791 0.665 0.681

Co-GAN[22] 0.912 0.891 No Converge
ADDA [37] 0.894 0.901 0.760

RAAN(-)(Ours) 0.883 0.915 0.807
RAAN(+)(Ours) 0.89 0.921 0.892

Table 2 Recognition rates of adapting fromMNIST toMNIST-M;RAAN(+) andRAAN(-) indicate
with and without re-weighting scheme

Dataset Source Only[4] CORAL[36] MMD[4] DANN [13] DSN [5] PixelDA[4] RAAN(+)/(-)(Ours)
MNIST to MNIST-M 0.636 0.577 0.769 0.774 0.832 0.982 0.985

4.1 Adaptation Tasks and Dataset

The first UDA task adapts between four hand written digit datasets including
MNIST[21], USPS [10], SVHN [31] and MNIST-M [12]. As shown in Figure 2,
adaptation between these four datasets are of varying difficulty. MNIST and USPS
are both composed of grey-scale images in a fairly well-controlled environment while
images in MNIST-M are synthesized using the patches from BSDS500 dataset [1]
as the background and the MNIST images as the foreground. To evaluate RAAN in
reducing large domain discrepancies, SVHN is also explored which is composed of
RGB images in more complicated real-world scenarios, e.g, misalignment of images
and different light conditions. In addition, note that the sub-class instances between
SVHN and the others are largely unbalanced.

To continue evaluating RAAN in reducing large domain shifts, the second adapta-
tion task is designed using the NYU-D dataset [30], adapting from the indoor object
images in RGB format to the depth variants encoded by the HHA format[18]. The
19-class dataset is extracted following the scheme in [37]. As shown in Figure 2,



12 Qingchao Chen, Yang Liu, Zhaowen Wang, Ian Wassell, Kevin Chetty

the domain shifts between images of RGB and HHA format are fairly large, mainly
due to the low image resolutions and potential mis-alignments caused by the coarse
cropping box. In addition, as shown in the instance number in Table 4, this dataset
has unbalanced sub-class instances. Furthermore, it is challenging as the images
from the target domain are in a completely different format from those in the source
domain.

4.2 Adaptation in Hand-Written Digit Dataset

For the task of adapting between hand written digit datasets, the following four
adaptation directions are chosen for the evaluation: from MNIST to USPS, from
USPS to MNIST, from SVHN to MNIST and from MNIST to MNIST-M. For the
first three adaptation tasks, we adopt a variant of LeNet as network Ts , Tt and
the domain discriminator network D is composed of three fully-connected layers
activated by the rectified linear unit (ReLU) with output activation numbers of
512,512,1 respectively. For adapting from MNIST to MNIST-M, we adopt the basic
model architecture of pixelDA but change their domain discriminator network to an
OT-based objective function and embed the ratio vector β. As for the experiment
protocols, we utilized the one in [24] for adapting between MNIST and USPS, while
for adaptation from SVHN to MNIST, we choose that in [37]. The protocol used
for adapting from MNIST to MNIST-M is the same as that in [4] to permit fair
comparisons.

To assess the reasons underlying RAAN’s performance, we denote RAAN(+)
and RAAN(-) as RAAN with and without the re-weighting scheme respectively.
As shown in Table 1, when adapting between MNIST and USPS, compared with
ADDA and Co-GAN, the proposed RAAN(-) and RAAN(+) achieved competitive
results and RAAN(+) slightly outperforms RAAN(-). In the most difficult task,
i.e., adapting from SVHN to MNIST, RAAN(-) and RAAN(+) achieved 80.7%
and 89.1% respectively, outperforming the state-of-the-art ADDA by 4.7% and
13.1% respectively, while Co-GAN does not converge in this experiment. It seems
that the weight-sharing approach utilized in Co-GAN is not capable of generating
transferable images between disparate domains such as MNIST and SVHN. As
RAAN(-) utilized the same DCNN architecture to ADDA’s, RAAN(-)’s superior
performance is mainly owing to the OT based objective function. We hypothesize
that the OT based objective function is able to better reduce feature distribution
divergence when the domains are disparate, e.g., SVHN and MNIST. In addition,
based on the fact that RAAN(+) achieves superior performances to both ADDA
and RAAN(-), we hypothesize that matching the label distribution helps adapt the
classifiers, and embedding it intominimizing the EMdistance of feature distributions
can be regarded as two cooperative tasks.

For adaption from MNIST to MNIST-M, as shown in Table 2, RAAN achieves
slightly better performance than pixelDA. In addition, as expected RAAN(-) and
RAAN(+) achieve similar results since the label distribution of the two domains
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Table 3 A-Distance of Adversarial Training Method

Metric Source ADDA RAAN(-) RAAN(+)
Only

A-Distance 1.673 1.548 1.526 1.506

are quite similar. Although it has been argued that domain shift between MNIST
and MNIST-M is large for a conventional DCNN based method[13], we argue that
reducing the domain shift caused by the background images in MNIST-M is easier
than reducing the one between MNIST and SVHN if a generative model is utilized.
The possible reason may be that the domain shifts led by background patches in
MNIST-M exhibit fewer details and variations than the one caused by the complex
real-world variations present in SVHN. In addition, we argue that the adversarial
training based generative model is good at generating such background patches.
These consideration may suggest and explain the slight outperformance achieved by
RAAN in this task, compared with RAAN’s large improvement when adapting from
SVHN to MNIST.

4.3 Adaptation in Cross-modality Dataset

In this section, RAAN is evaluated in the presence of large domain shifts that
confront the adaptation from RGB images to RGB-depth images. To enable a fair
comparison, we follow ADDA’s experimental set-up [37] and utilized the VGG-16
architecture [35] for DCNNs Ts and Tt . The domain discriminator network D is
composed of three fully-connected layers activated by the Relu, with 1024,2048,1
outputs respectively.

As shown in Table 4, we report the sub-class classification accuracy achieved
by RAAN(-) and RAAN(+), along with the re-weighted label distribution PRe(Y s)

yielded by RAAN(+) and the target one Pt (Y t ). It can be observed from the overall
recognition rates that RAAN(+) achieves an average of 34.3%, outperformingADDA
by 6.7% and RAAN(-) by 3.5%. In addition, RAAN(-) outperforms ADDA by 3.2%.
For classes with less samples, RAAN(+) and RAAN(-) achieve better performances
than ADDA. In fact, ADDA only achieved better performance in class ’chair’ as
that class has the largest number of samples. It can also be seen that RAAN(+)
outperforms RAAN(-) not only from the overall recognition accuracy but also from
how many classes the classifier can recognize (classes with the recognition rates
more than 0%). This is potentially due to the fact that the re-weighting scheme
increases the significance of instances from the sub-classes with a lower number of
instances. This can be verified by comparing the number of sub-class instances with
the estimated ratio vector β in Table 4.
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Fig. 3 Ratio of label distribution between SVHN and MNIST; red line indicates the ground truth
ratio, while blue one indicates the estimated ratio.

4.4 Parameter Selection and Implementation

The experiments are conducted on a GPU cluster. For all experiments, we uti-
lize the Adam optimizer, with the learning rate selected from the following
set:{2e−5, 5e−5, 1e−4, 2e−4, 5e−4, 1e−3}. For the regularization weights, λgp and λreg
are chosen from the following sets {1, 10, 50, 100} and {0.1, 1, 10, 50, 100, 500} re-
spectively. We used the exponential decay, with decay factor of 0.99 for every 1000
iterations. All experiments are run 10 times, each for 100000 iterations and we report
the average results. For adapting from MNIST to MNIST-M, the batch size is 32
while for others, the batch size is 128.

Table 4 Adaptation results (%) in cross-modality dataset; RAAN(+) and RAAN(-) indicate with
and without re-weighting scheme
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NO.instances 19 96 87 210 611 103 122 129 25 55 144 37 51 276 47 129 210 33 17 2401
Source Only 0.0 76.0 0.0 10.5 13.1 2.9 9.0 45.7 0.0 3.6 12.5 0.0 0.0 54.9 0.0 2.3 14.8 3.0 0.0 18.9

ADDA 0.0 46.9 0.0 0.5 76.2 19.4 1.6 51.9 4.0 1.8 0.7 0.0 0.0 8.3 0.0 6.2 13.8 0.0 0.0 27.6
RAAN(-) (ours) 0.000 0.500 0.299 0.0 62.9 1.9 0.0 27.1 0.0 0.0 0.0 0.0 0.0 69.2 0.0 0.0 4.3 0.0 0.0 30.8
RAAN(+) (ours) 0.0 10.4 0.0 14.8 70.3 48.5 0.0 61.2 0.0 0.0 0.7 0.0 0.0 63.8 10.6 0.0 20.5 0.0 0.0 34.3

Est .β 2.040 1.395 1.568 0.872 0.492 1.440 1.297 1.206 1.640 1.629 1.057 1.858 1.652 0.805 1.527 1.102 0.682 1.814 1.858 −−

5 Analysis

In this section, we analyze the results presented in the previous sections, including the
re-weighting scheme in adversarial training and the domain distribution divergence
in both quantitative and qualitative ways. The evaluation is in the context of the most
challenging scenario, which involves adapting from the SVHN to the MNIST.
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5.1 Evaluate the Re-weighting Scheme

In Figure 3, we evaluate the re-weighting scheme by comparing the ground truth
label ratio vector (red) and the learned one (blue). It can be seen that some ratios are
accurate while others are not. However, the relative ratio trend of the learned ratio
vector β follows that of the ground truth.

Fig. 4 T-SNE plot of features when adapting from SVHN to MNIST; (a) No adaptation (b)
Adaptation after ADDA (c) Adaptation after RAAN. We randomly select 1000 features samples
from 10 classes, with 100 samples per class.
.

As the label distributions between SVHN and MNIST are largely mismatched, it
will confuse the domain discriminator and the feature distributions will be matched
in a biased manner. In addition, the mismatch of label distribution will directly give
rise to the mismatch of classifiers as well. However, as shown in Figure 3, RAAN(+)
successfully matches the distribution of labels by simply learning the ratio vector
embedded in the adversarial training. Therefore, this can be regarded as the main
reason for the 9% improvement achieved by RAAN(+) compared to RAAN(-) shown
in Table 1. To sum up, matching the label distribution can better adapt the classifiers.

To understand the instance re-weighting scheme intuitively, it is implemented by
assigning different significance to source domain instances. For example, as shown
in Figure 3, the learned ratio of digit “0” is around 1.5, which means that in the
adversarial training, each sample from digit “0” in SVHN dataset can be regarded
as 1.5 samples.

5.2 Evaluate Distribution Divergence of Feature Embeddings

To analyze the distribution divergence in a quantitative way, we calculate theA dis-
tance suggested by the UDA community [3] [29], taking the input features extracted
by various methods. Using the SVM classifier, we first calculate the generalization
error θ of classifying the source and target domain features as a binary classification
task. Then the A distance can be calculated as follows: d = 2(1 − 2θ). As shown
in the Table 3, the A distances of feature embeddings with no adaptation, adapted
by ADDA, OT based RAAN(-) and RAAN(+) progressively decrease. In the exper-
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iment, since RAAN uses the same DCNN architecture as ADDA’s, compared with
ADDA, the lower A distance achieved by RAAN(-) infers that feature distribution
between domains can be better matched using RAAN(-). This may be due to the
fact that the OT based EM distance is a better measure to reduce large distribu-
tion divergence than the geometry-oblivious JS divergence. In addition, compared
to RAAN(-), the smaller A distance achieved by RAAN(+) indicates that matching
the label distribution and the feature distribution are two cooperative tasks and this
cooperative training may be the main reason for the lower A distance.

Finally, to measure the feature distribution divergence in a qualitative way, we
utilized the T-SNE software package [28] to visualize the 2-D embedding of the
extracted features. It can be seen in Figure 4 that the example points from the same
class adapted by RAAN in Figure 4(c) are clustered closer than those in Figure 4(b)
by ADDA and also those without the adaptation method in Figure 4(a).

6 Conclusions

In this paper, we propose a Re-weighted Adversarial Adaptation Network (RAAN)
to reduce disparate domain feature distribution and adapt the classifier. Through
an extensive set of experiments using various UDA datasets, RAAN outperforms
state-of-the-art methods by a large margin when the domain distribution divergence
is large. Therefore we argue that the OT based objective function in the adversar-
ial training exhibits better properties to match distributions when they share less
common support. In addition, embedding the estimation of the ratio vector into the
adversarial training is capable of matching the label distribution between domains
and further adapting the classifier. It is also shown that this scheme can help reduce
feature distribution divergence.
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