42 research outputs found

    S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo

    Get PDF
    BACKGROUND: Oxidative and nitrosative stress have been involved in gentamicin-induced nephrotoxicity. The purpose of this work was to study the effect of S-allylmercaptocysteine, a garlic derived compound, on gentamicin-induced oxidative and nitrosative stress and nephrotoxicity. In addition, the in vitro reactive oxygen species scavenging properties of S-allylmercaptocysteine were studied. RESULTS: S-allylmercaptocysteine was able to scavenge hydroxyl radicals and singlet oxygen in vitro. In rats treated with gentamicin (70 mg/Kg body weight, subcutaneously, every 12 h, for 4 days), renal oxidative stress was made evident by the increase in protein carbonyl content and 4-hydroxy-2-nonenal, and the nitrosative stress was made evident by the increase in 3-nitrotyrosine. In addition, gentamicin-induced nephrotoxicity was evident by the: (1) decrease in creatinine clearance and in activity of circulating glutathione peroxidase, and (2) increase in urinary excretion of N-acetyl-β-D-glucosaminidase, and (3) necrosis of proximal tubular cells. Gentamicin-induced oxidative and nitrosative stress and nephrotoxicity were attenuated by S-allylmercaptocysteine treatment (100 mg/Kg body weight, intragastrically, 24 h before the first dose of gentamicin and 50 mg/Kg body weight, intragastrically, every 12 h, for 4 days along gentamicin-treatment). CONCLUSION: In conclusion, S-allylmercaptocysteine is able to scavenge hydroxyl radicals and singlet oxygen in vitro and to ameliorate the gentamicin-induced nephrotoxicity and oxidative and nitrosative stress in vivo

    Immunolocalization of cell wall polymers in grapevine (Vitis vinifera) internodes under nitrogen, phosphorus or sulfur deficiency

    Get PDF
    Abstract The impact on cell wall (CW) of the deficiency in nitrogen (–N), phosphorus (–P) or sulphur (–S), known to impair essential metabolic pathways, was investigated in the economically important fruit species Vitis vinifera L. Using cuttings as an experimental model a reduction in total internode number and altered xylem shape was observed. Under –N an increased internode length was also seen. CW composition, visualised after staining with calcofluor white, Toluidine blue and ruthenium red, showed decreased cellulose in all stresses and increased pectin content in recently formed internodes under –N compared to the control. Using CW-epitope specific monoclonal antibodies (mAbs), lower amounts of extensins incorporated in the wall were also observed under –N and –P conditions. Conversely, increased pectins with a low degree of methyl-esterification and richer in long linear 1,5-arabinan rhamnogalacturonan-I (RG-I) side chains were observed under –N and –P in mature internodes which, in the former condition, were able to form dimeric association through calcium ions. –N was the only condition in which 1,5-arabinan branched RG- content was not altered, as –P and –S older internodes showed, respectively, lower and higher amounts of this polymer. Higher xyloglucan content in older internodes was also observed under –N. The results suggest that impairments of specific CW components led to changes in the deposition of other polymers to promote stiffening of the CW. The unchanged extensin amount observed under –S may contribute to attenuating the effects on the CW integrity caused by this stress. Our work showed that, in organized V. vinifera tissues, modifications in a given CW component can be compensated by synthesis of different polymers and/or alternative linking between polymers. The results also pinpoint different strategies at the CW level to overcome mineral stress depending on how essential they are to cell growth and plant development

    Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC

    Get PDF
    The mesenchymal stroma harbors an important population of cells that possess stem cell-like characteristics including self renewal and differentiation capacities and can be derived from a variety of different sources. These multipotent mesenchymal stem cells (MSC) can be found in nearly all tissues and are mostly located in perivascular niches. MSC have migratory abilities and can secrete protective factors and act as a primary matrix for tissue regeneration during inflammation, tissue injuries and certain cancers

    Bumble bee parasite strains vary in resistance to phytochemicals

    Get PDF
    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemical, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline

    Searches for heavy Higgs bosons in two-Higgs-doublet models and for t → c h decay using multilepton and diphoton final states in p p collisions at 8 TeV

    Get PDF
    Searches are presented for heavy scalar (H) and pseudoscalar (A) Higgs bosons posited in the two doublet model (2HDM) extensions of the standard model (SM). These searches are based on a data sample of pp collisions collected with the CMS experiment at the LHC at a center-of-mass energy of root s = 8 TeV and corresponding to an integrated luminosity of 19.5 fb(-1). The decays H - GT hh and A - GT Zh, where h denotes an SM-like Higgs boson, lead to events with three or more isolated charged leptons or with a photon pair accompanied by one or more isolated leptons. The search results are presented in terms of the H and A production cross sections times branching fractions and are further interpreted in terms of 2HDM parameters. We place 95% C.L. cross section upper limits of approximately 7 pb on sigma B for H - GT hh and 2 pb for A - GT Zh. Also presented are the results of a search for the rare decay of the top quark that results in a charm quark and an SM Higgs boson, t - GT ch, the existence of which would indicate a nonzero flavor-changing Yukawa coupling of the top quark to the Higgs boson. We place a 95% C.L. upper limit of 0.56% on B(t - GT ch)

    A century of trends in adult human height

    Get PDF

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining https://researchonline.ljmu.ac.uk/images/research_banner_face_lab_290.jpgunderweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p
    corecore