644 research outputs found

    Extreme value statistics for two-dimensional convective penetration in a pre-Main Sequence star

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we propose a new form for the diffusion coefficient that may be used for one-dimensional stellar evolution calculations in the large P\'eclet number regime. These results should contribute to the 321D link.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework (FP7/2007-2013)/ERC grant agreement no. 32047

    Benchmarking the Multi-dimensional Stellar Implicit Code MUSIC

    Get PDF
    11 pages, 11 figures, accepted for publication in A&AWe present the results of a numerical benchmark study for the MUlti-dimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multi-dimensional tests are performed and analysed. Each of these test cases is analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions we verify MUSIC by comparing to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in the future applications.This project has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement no 320478. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Super- computer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. We are very thankful to Colin McNally for providing his results for the Kelvin-Helmholtz test

    Multi-dimensional structure of accreting young stars

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this recordThis work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley \& Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. One conclusion is that, for a given amount of accreted energy transferred to the accreting object, a treatment assuming accretion energy redistribution throughout the stellar interior could significantly overestimate the effects on the stellar structure, in particular, on the resulting expansion.Part of this work was funded by the Royal Society Wolfson Merit award WM090065, the French Programme National de Physique Stellaire (PNPS) and Programme National Hautes Energies (PNHE), and by the ÂŽ European Research Council through grants ERC-AdG No. 320478-TOFU and ERC-AdG No. 341157-COCO2CASA. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk ). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National EInfrastructure. This work also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

    Full text link
    Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up' reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic

    Thrombotic gene polymorphisms and postoperative outcome after coronary artery bypass graft surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging perioperative genomics may influence the direction of risk assessment and surgical strategies in cardiac surgery. The aim of this study was to investigate whether single nucleotide polymorphisms (SNP) affect the clinical presentation and predispose to increased risk for postoperative adverse events in patients undergoing coronary artery bypass grafting surgery (CABG).</p> <p>Methods</p> <p>A total of 220 patients undergoing first-time CABG between January 2005 and May 2008 were screened for factor V gene G1691A (FVL), prothrombin/factor II G20210A (PT G20210A), angiotensin I-converting enzyme insertion/deletion (ACE-ins/del) polymorphisms by PCR and Real Time PCR. End points were defined as death, myocardial infarction, stroke, postoperative bleeding, respiratory and renal insufficiency and event-free survival. Patients were compared to assess for any independent association between genotypes for thrombosis and postoperative phenotypes.</p> <p>Results</p> <p>Among 220 patients, the prevalence of the heterozygous FVL mutation was 10.9% (n = 24), and 3.6% (n = 8) were heterozygous carriers of the PT G20210A mutation. Genotype distribution of ACE-ins/del was 16.6%, 51.9%, and 31.5% in genotypes I/I, I/D, and D/D, respectively. FVL and PT G20210A mutations were associated with higher prevalence of totally occluded coronary arteries (p < 0.001). Furthermore the risk of left ventricular aneurysm formation was significantly higher in FVL heterozygote group compared to FVL G1691G (<it>p </it>= 0.002). ACE D/D genotype was associated with hypertension (<it>p </it>= 0.004), peripheral vascular disease (p = 0.006), and previous myocardial infarction (<it>p </it>= 0.007).</p> <p>Conclusions</p> <p>FVL and PT G20210A genotypes had a higher prevalence of totally occluded vessels potentially as a result of atherothrombotic events. However, none of the genotypes investigated were independently associated with mortality.</p

    Myocardial ischemia with left ventricular outflow obstruction

    Get PDF
    We report an unusual case of a 32-year old man who was treated for a hypertrophic obstructive cardiomyopathy (HOCM) with a DDD pacing with short AV delay reduction in the past. Without prior notice the patient developed ventricular fibrillation and an invasive cardiac diagnostic was performed, which revealed a myocardial bridging around of the left anterior descending artery (LAD). We suspected ischemia that could be either related to LAD artery compression or perfusion abnormalities due to AV delay reduction with related to diastolic dysfunction

    Impact of protein supplementation during endurance training on changes in skeletal muscle transcriptome

    Get PDF
    Background: Protein supplementation improves physiological adaptations to endurance training, but the impact on adaptive changes in the skeletal muscle transcriptome remains elusive. The present analysis was executed to determine the impact of protein supplementation on changes in the skeletal muscle transcriptome following 5- weeks of endurance training. Results: Skeletal muscle tissue samples from the vastus lateralis were taken before and after 5-weeks of endurance training to assess changes in the skeletal muscle transcriptome. One hundred and 63 genes were differentially expressed after 5-weeks of endurance training in both groups (q-value 0.05). Endurance training primarily affected expression levels of genes related to extracellular matrix and these changes tended to be greater in PRO than in CON. Conclusions: Protein supplementation subtly impacts endurance training-induced changes in the skeletal muscle transcriptome. In addition, our transcriptomic analysis revealed that the extracellular matrix may be an important factor for skeletal muscle adaptation in response to endurance training. This trial was registered at clinicaltrials.gov as NCT03462381, March 12, 201

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
    • 

    corecore