142 research outputs found

    The use of hormonal therapy with radiotherapy for prostate cancer: analysis of prospective randomised trials

    Get PDF
    In 1901, Wilhelm Conrad Röntgen won the Nobel prize in Physics for his discovery of the Röntgen rays or, as he himself called them, X-rays. In 1966, Dr Charles Brenton Higgins won the Nobel Prize in Medicine for his breakthroughs concerning hormonal treatment of prostatic cancer. After 31 years, in 1997, the first prospective randomised trials of the combination of hormonal therapy and radiation therapy were published, showing increased survival when compared to radiation therapy alone for patients with prostate cancer. Since 1997, many investigators have published trials combining hormonal and radiation therapy for prostate cancer. This minireview will address the largest and most influential of these trials, and attempt to guide physicians in selecting the appropriate patients for this combined approach

    Impact of hormonal treatment duration in combination with radiotherapy for locally advanced prostate cancer: Meta-analysis of randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormone therapy plus radiotherapy significantly decreases recurrences and mortality of patients affected by locally advanced prostate cancer. In order to determine if difference exists according to the hormonal treatment duration, a literature-based meta-analysis was performed.</p> <p>Methods</p> <p>Relative risks (RR) were derived through a random-effect model. Differences in primary (biochemical failure, BF; cancer-specific survival, CSS), and secondary outcomes (overall survival, OS; local or distant recurrence, LR/DM) were explored. Absolute differences (AD) and the number needed to treat (NNT) were calculated. Heterogeneity, a meta-regression for clinic-pathological predictors and a correlation test for surrogates were conducted.</p> <p>Results</p> <p>Five trials (3,424 patients) were included. Patient population ranged from 267 to 1,521 patients. The longer hormonal treatment significantly improves BF (with significant heterogeneity) with an absolute benefit of 10.1%, and a non significant trend in CSS. With regard to secondary end-points, the longer hormonal treatment significantly decrease both the LR and the DM with an absolute difference of 11.7% and 11.5%. Any significant difference in OS was observed. None of the three identified clinico-pathological predictors (median PSA, range 9.5-20.35, Gleason score 7-10, 27-55% patients/trial, and T3-4, 13-77% patients/trial), did significantly affect outcomes. At the meta-regression analysis a significant correlation between the overall treatment benefit in BF, CSS, OS, LR and DM, and the length of the treatment was found (p≤0.03).</p> <p>Conclusions</p> <p>Although with significant heterogeneity (reflecting different patient' risk stratifications), a longer hormonal treatment duration significantly decreases biochemical, local and distant recurrences, with a trend for longer cancer specific survival.</p

    Soft tissue non-Hodgkin lymphoma of shoulder in a HIV patient: a report of a case and review of the literature

    Get PDF
    The risk of developing lymphoma is greatly increased in HIV infection. Musculoskeletal manifestations of the human immunodeficiency virus (HIV) are common and are sometimes the initial presentation of the disease. Muscle, bone, and joints are involved by septic arthritis, myopathies and neoplasms. HIV-related neoplastic processes that affect the musculoskeletal system include Kaposi's sarcoma and non-Hodgkin's lymphoma, the latter being mainly localized at lower extremities, spine and skull

    Long-term biochemical results after high-dose-rate intensity modulated brachytherapy with external beam radiotherapy for high risk prostate cancer

    Get PDF
    Abstract Background Biochemical control from series in which radical prostatectomy is performed for patients with unfavorable prostate cancer and/or low dose external beam radiation therapy are given remains suboptimal. The treatment regimen of HDR brachytherapy and external beam radiotherapy is a safe and very effective treatment for patients with high risk localized prostate cancer with excellent biochemical control and low toxicity.</p

    No supra-additive effects of goserelin and radiotherapy on clonogenic survival of prostate carcinoma cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncological results of radiotherapy for locally advanced prostate cancer (PC) are significantly improved by simultaneous application of LHRH analoga (e.g. goserelin). As 85% of PC express LHRH receptors, we investigated the interaction of goserelin incubation with radiotherapy under androgen-deprived conditions in vitro.</p> <p>Methods</p> <p>LNCaP and PC-3 cells were stained for LHRH receptors. Downstream the LHRH receptor, changes in protein expression of c-fos, phosphorylated p38 and phosphorylated ERK1/2 were analyzed by means of Western blotting after incubation with goserelin and irradiation with 4 Gy. Both cell lines were incubated with different concentrations of goserelin in hormone-free medium. 12 h later cells were irradiated (0 – 4 Gy) and after 12 h goserelin was withdrawn. Endpoints were clonogenic survival and cell viability (12 h, 36 h and 60 h after irradiation).</p> <p>Results</p> <p>Both tested cell lines expressed LHRH-receptors. Changes in protein expression demonstrated the functional activity of goserelin in the tested cell lines. Neither in LNCaP nor in PC-3 any significant effects of additional goserelin incubation on clonogenic survival or cell viability for all tested concentrations in comparison to radiation alone were seen.</p> <p>Conclusion</p> <p>The clinically observed increase in tumor control after combination of goserelin with radiotherapy in PC cannot be attributed to an increase in radiosensitivity of PC cells by goserelin in vitro.</p

    A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

    Get PDF
    Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence

    Tailored treatment including radical prostatectomy and radiation therapy + androgen deprivation therapy versus exclusive radical prostatectomy in high-risk prostate cancer patients: results from a prospective study

    Get PDF
    Purpose To evaluate outcomes of patients with high risk prostate cancer (PCa) who underwent radical prostatectomy (RP) in a context of a multidisciplinary approach including adjuvant radiation (RT) + androgen deprivation therapy (ADT). Matherials and Methods 244 consecutive patients with high risk localized PCa underwent RP and bilateral extended pelvic lymph node dissection at our institution. Adjuvant RT + 24 months ADT was carried out in subjects with pathological stage ≥ T3N0 and/or positive surgical margins or in patients with local relapse. Results After a median follow-up was 54.17 months (range 5.4-117.16), 13 (5.3%) subjects had biochemical progression, 21 (8.6%) had clinical progression, 7 (2.9%) died due to prostate cancer and 15 (6.1%) died due to other causes. 136 (55.7%) patients did not receive any adjuvant treatment while 108 (44.3%) received respectively adjuvant or salvage RT+ADT. Multivariate Cox proportional hazard analysis showed that pre-operative PSA value at diagnosis is a significant predictive factor for BCR (HR: 1.04, p < 0.05) and that Gleason Score 8-10 (HR: 2.4; p<0.05) and PSMs (HR: 2.01; p < 0.01) were significant predictors for clinical progression. Radical prostatectomy group was associated with BPFS, CPFS, CSS and OS at 5-years of 97%, 90%, 95% and 86% respectively, while adjuvant radiation + androgen deprivation therapy group was associated with a BPFS, CPFS and CSS at 5-years of 91%, 83%, 95% and 88%, without any statistical difference. Conclusions Multimodality tailored treatment based on RP and adjuvant therapy with RT+ADT achieve similar results in terms of OS after 5-years of follow-up

    Outcomes of hypofractionated stereotactic body radiotherapy boost for intermediate and high-risk prostate cancer

    Get PDF
    BACKGROUND AND PURPOSE: Treatment of intermediate and high-risk prostate cancer with a high BED has been shown to increase recurrence free survival (RFS). While high dose rate (HDR) brachytherapy, given as a boost is effective in delivering a high BED, many patients are not candidates for the procedure or wish to avoid an invasive procedure. We evaluated the use of stereotactic body radiotherapy (SBRT) as a boost, with dosimetry modeled after HDR-boost. MATERIAL AND METHODS: Fifty patients were treated with two fractions of SBRT (9.5-10.5 Gy/fraction) after 45 Gy external-beam radiotherapy, with 48 eligible for analysis at a median follow-up of 42.7 months. RESULTS: The Kaplan-Meier estimates of biochemical control post-radiation therapy (95 % Confidence Interval) at 3, 4 and 5 years were 95 % (81–99 %), 90 % (72–97 %) and 90 % (72–97 %), respectively (not counting 2 patients with a PSA bounce as failures). RFS (defined as disease recurrence or death) estimates at 3, 4 and 5 years were 92 % (77–97 %), 88 % (69–95 %) and 83 % (62–93 %) if patients with PSA bounces are not counted as failures, and were 90 % (75–96 %), 85 % (67–94 %) and 75 % (53–88 %) if they were. The median time to PSA nadir was 26.2 months (range 5.8–82.9 months), with a median PSA nadir of 0.05 ng/mL (range <0.01–1.99 ng/mL). 2 patients had a “benign PSA bounce”, and 4 patients recurred with radiographic evidence of recurrence beyond the RT fields. Treatment was well tolerated with no acute G3 or higher GI or GU toxicity and only a single G3 late GU toxicity of urinary obstruction. CONCLUSIONS: SBRT boost is well-tolerated for intermediate and high-risk prostate cancer patients with good biochemical outcomes and low toxicity
    • …
    corecore