2,407 research outputs found

    Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA

    Get PDF
    Background: Early cancer detection could identify tumors at a time when outcomes are superior and treatment is less morbid. This prospective case-control sub-study (from NCT02889978 and NCT03085888) assessed the performance of targeted methylation analysis of circulating cell-free DNA (cfDNA) to detect and localize multiple cancer types across all stages at high specificity. / Participants and methods: The 6689 participants [2482 cancer (>50 cancer types), 4207 non-cancer] were divided into training and validation sets. Plasma cfDNA underwent bisulfite sequencing targeting a panel of >100 000 informative methylation regions. A classifier was developed and validated for cancer detection and tissue of origin (TOO) localization. / Results: Performance was consistent in training and validation sets. In validation, specificity was 99.3% [95% confidence interval (CI): 98.3% to 99.8%; 0.7% false-positive rate (FPR)]. Stage I–III sensitivity was 67.3% (CI: 60.7% to 73.3%) in a pre-specified set of 12 cancer types (anus, bladder, colon/rectum, esophagus, head and neck, liver/bile-duct, lung, lymphoma, ovary, pancreas, plasma cell neoplasm, stomach), which account for ∌63% of US cancer deaths annually, and was 43.9% (CI: 39.4% to 48.5%) in all cancer types. Detection increased with increasing stage: in the pre-specified cancer types sensitivity was 39% (CI: 27% to 52%) in stage I, 69% (CI: 56% to 80%) in stage II, 83% (CI: 75% to 90%) in stage III, and 92% (CI: 86% to 96%) in stage IV. In all cancer types sensitivity was 18% (CI: 13% to 25%) in stage I, 43% (CI: 35% to 51%) in stage II, 81% (CI: 73% to 87%) in stage III, and 93% (CI: 87% to 96%) in stage IV. TOO was predicted in 96% of samples with cancer-like signal; of those, the TOO localization was accurate in 93%. / Conclusions: cfDNA sequencing leveraging informative methylation patterns detected more than 50 cancer types across stages. Considering the potential value of early detection in deadly malignancies, further evaluation of this test is justified in prospective population-level studies

    The gradient of potential vorticity, quaternions and an orthonormal frame for fluid particles

    Full text link
    The gradient of potential vorticity (PV) is an important quantity because of the way PV (denoted as qq) tends to accumulate locally in the oceans and atmospheres. Recent analysis by the authors has shown that the vector quantity \bdB = \bnabla q\times \bnabla\theta for the three-dimensional incompressible rotating Euler equations evolves according to the same stretching equation as for \bom the vorticity and \bB, the magnetic field in magnetohydrodynamics (MHD). The \bdB-vector therefore acts like the vorticity \bom in Euler's equations and the \bB-field in MHD. For example, it allows various analogies, such as stretching dynamics, helicity, superhelicity and cross helicity. In addition, using quaternionic analysis, the dynamics of the \bdB-vector naturally allow the construction of an orthonormal frame attached to fluid particles\,; this is designated as a quaternion frame. The alignment dynamics of this frame are particularly relevant to the three-axis rotations that particles undergo as they traverse regions of a flow when the PV gradient \bnabla q is large.Comment: Dedicated to Raymond Hide on the occasion of his 80th birthda

    precision mathematics and approximation mathematics the conceptual and educational role of their comparison

    Get PDF
    The relationship between applied and pure mathematics is of utmost concern for Klein. Examples from Volume III of his "Elementarmathematik" illustrate how, starting from an intuitive and sometimes practical approach, Klein develops abstract concepts working in rich "mathematical environments". The examples concern the concept of empirical function and its comparison with an idealised curve, point sets obtained through circular inversion that lead to compare rational numbers and real numbers, and the "continuous" transformation of curves with the help of a point moving in space

    Chiral tunneling and the Klein paradox in graphene

    Full text link
    The so-called Klein paradox - unimpeded penetration of relativistic particles through high and wide potential barriers - is one of the most exotic and counterintuitive consequences of quantum electrodynamics (QED). The phenomenon is discussed in many contexts in particle, nuclear and astro- physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment by using electrostatic barriers in single- and bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum tunneling in these materials becomes highly anisotropic, qualitatively different from the case of normal, nonrelativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein's gedanken experiment whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure

    Long-range transfer of electron-phonon coupling in oxide superlattices

    Full text link
    The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is currently the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa2Cu3O7\bf YBa_2 Cu_3 O_7 and the colossal-magnetoresistance compound La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} that suggests a new approach to this problem. We find that a rotational mode of the MnO6_6 octahedra in La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the YBa2Cu3O7\bf YBa_2 Cu_3 O_7 layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature Material

    Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates

    Full text link
    The superconducting state of underdoped cuprates is often described in terms of a single energy-scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the underdoped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the underdoped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the superconducting gap and antinodal regions. While antinodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations.Comment: 16 pages, 5 figure

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models
    • 

    corecore