1,850 research outputs found

    Understanding the etiopathogenesis of Uttana Vatarakta (peripheral vascular disease) - An Observational Study

    Get PDF
    Advanced life style and changing food habits affects the activities of individual which leads to many diseases and Peripheral Vascular Diseases are one among them. They are characterized by reduction of blood flow and oxygen supply through peripheral vascular vessels. This can happen in arteries or veins. The incidence of Varicose vein is more common with age and high prevalence is after 30 years of life. PAD occurs in patients over 40 years old; the highest incidence occurs in the sixth and seventh decades of life and it affects 10-15% of the general population. The symptoms of Uttana Vatarakta owing to the Margavarana pathology simulate with the symptoms of Peripheral vascular diseases and some of the etiological factors of Uttana Vatarakta in the writing are specific in inclining Peripheral Vascular Diseases. Ayurveda emphasise the importance of study on etiopathogenesis of disease before the planning of treatment protocol. In this study an effort is done to identify the Nidanas and pattern of Samprapti in relation with Peripheral vascular diseases for the better understanding of different clinical presentations of Uttana Vatarakta

    Electro-Magnetic Nucleon Form Factors and their Spectral Functions in Soliton Models

    Full text link
    It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfer tt are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to timelike tt leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.Comment: 24 pages, (RevTeX), 5 PS-figures; Data points in fig.2 and corresponding references added. Final version, to be published in Z.Physik

    Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films

    Full text link
    Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B+^+) and phosphorous (P+^+) ions. Different samples, prepared by varying the ion dose in the range 101410^{14} to 5 x 101510^{15} and ion energy in the range 150-350 keV, were investigated by the Raman spectroscopy, photoluminescence (PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman results from dose dependent B+^+ implanted samples show red-shifted and asymmetrically broadened Raman line-shape for B+^+ dose greater than 101410^{14} ions cm2^{-2}. The asymmetry and red shift in the Raman line-shape is explained in terms of quantum confinement of phonons in silicon nanostructures formed as a result of ion implantation. PL spectra shows size dependent visible luminescence at \sim 1.9 eV at room temperature, which confirms the presence of silicon nanostructures. Raman studies on P+^+ implanted samples were also done as a function of ion energy. The Raman results show an amorphous top SOS surface for sample implanted with 150 keV P+^+ ions of dose 5 x 101510^{15} ions cm2^{-2}. The nanostructures are formed when the P+^+ energy is increased to 350 keV by keeping the ion dose fixed. The GAXRD results show consistency with the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in SILICON(SPRINGER

    Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C

    Get PDF
    Cardiac myosin binding protein-C (cMyBP-C) is an accessory protein found in the A-bands of vertebrate sarcomeres and mutations in the cMyBP-C gene are a leading cause of familial hypertrophic cardiomyopathy. The regulatory functions of cMyBP-C have been attributed to the N-terminus of the protein, which is composed of tandem immunoglobulin (Ig)-like domains (C0, C1, and C2), a region rich in proline and alanine residues (the Pro-Ala rich region) that links C0 and C1, and a unique sequence referred to as the MyBP-C motif, or M-domain, that links C1 and C2. Recombinant proteins that contain various combinations of the N-terminal domains of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but the specific sequences required for these effects differ between species; the Pro-Ala region has been implicated in human cMyBP-C whereas the C1 and M-domains appear important in mouse cMyBP-C. To investigate whether species-specific differences in sequence can account for the observed differences in function, we compared sequences of the Pro-Ala rich region in cMyBP-C isoforms from different species. Here we report that the number of proline and alanine residues in the Pro-Ala rich region varies significantly between different species and that the number correlates directly with mammalian body size and inversely with heart rate. Thus, systematic sequence differences in the Pro-Ala rich region of cMyBP-C may contribute to observed functional differences in human versus mouse cMyBP-C isoforms and suggest that the Pro-Ala region may be important in matching contractile speed to cardiac function across species

    A Novel Xenograft Model in Zebrafish for High-Resolution Investigating Dynamics of Neovascularization in Tumors

    Get PDF
    Tumor neovascularization is a highly complex process including multiple steps. Understanding this process, especially the initial stage, has been limited by the difficulties of real-time visualizing the neovascularization embedded in tumor tissues in living animal models. In the present study, we have established a xenograft model in zebrafish by implanting mammalian tumor cells into the perivitelline space of 48 hours old Tg(Flk1:EGFP) transgenic zebrafish embryos. With this model, we dynamically visualized the process of tumor neovascularization, with unprecedented high-resolution, including new sprouts from the host vessels and the origination from VEGFR2+ individual endothelial cells. Moreover, we quantified their contributions during the formation of vascular network in tumor. Real-time observations revealed that angiogenic sprouts in tumors preferred to connect each other to form endothelial loops, and more and more endothelial loops accumulated into the irregular and chaotic vascular network. The over-expression of VEGF165 in tumor cells significantly affected the vascularization in xenografts, not only the number and size of neo-vessels but the abnormalities of tumor vascular architecture. The specific inhibitor of VEGFR2, SU5416, significantly inhibited the vascularization and the growth of melanoma xenografts, but had little affects to normal vessels in zebrafish. Thus, this zebrafish/tumor xenograft model not only provides a unique window to investigate the earliest events of tumoral neoangiogenesis, but is sensitive to be used as an experimental platform to rapidly and visually evaluate functions of angiogenic-related genes. Finally, it also offers an efficient and cost-effective means for the rapid evaluation of anti-angiogenic chemicals

    Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy

    Get PDF
    Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control

    SaS-BCI: A New Strategy to Predict Image Memorability and use Mental Imagery as a Brain-Based Biometric Authentication

    Get PDF
    Security authentication is one of the most important levels of information security. Nowadays, human biometric techniques are the most secure methods for authentication purposes that cover the problems of older types of authentication like passwords and pins. There are many advantages of recent biometrics in terms of security; however, they still have some disadvantages. Progresses in technology made some specific devices, which make it possible to copy and make a fake human biometric because they are all visible and touchable. According to this matter, there is a need for a new biometric to cover the issues of other types. Brainwave is human data, which uses them as a new type of security authentication that has engaged many researchers. There are some research and experiments, which are investigating and testing EEG signals to find the uniqueness of human brainwave. Some researchers achieved high accuracy rates in this area by applying different signal acquisition techniques, feature extraction and classifications using Brain–Computer Interface (BCI). One of the important parts of any BCI processes is the way that brainwaves could be acquired and recorded. A new Signal Acquisition Strategy is presented in this paper for the process of authorization and authentication of brain signals specifically. This is to predict image memorability from the user’s brain to use mental imagery as a visualization pattern for security authentication. Therefore, users can authenticate themselves with visualizing a specific picture in their minds. In conclusion, we can see that brainwaves can be different according to the mental tasks, which it would make it harder using them for authentication process. There are many signal acquisition strategies and signal processing for brain-based authentication that by using the right methods, a higher level of accuracy rate could be achieved which is suitable for using brain signal as another biometric security authentication

    Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index

    Get PDF
    Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated

    N- and C-Terminal Domains of the Calcium Binding Protein EhCaBP1 of the Parasite Entamoeba histolytica Display Distinct Functions

    Get PDF
    Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, and calcium signaling is thought to be involved in amoebic pathogenesis. EhCaBP1, a Ca2+ binding protein of E. histolytica, is essential for parasite growth. High resolution crystal structure of EhCaBP1 suggested an unusual arrangement of the EF-hand domains in the N-terminal part of the structure, while C-terminal part of the protein was not traced. The structure revealed a trimer with amino terminal domains of the three molecules interacting in a head-to-tail manner forming an assembled domain at the interface with EF1 and EF2 motifs of different molecules coming close to each other. In order to understand the specific roles of the two domains of EhCaBP1, the molecule was divided into two halves, and each half was separately expressed. The domains were characterized with respect to their structure, as well as specific functional features, such as ability to activate kinase and bind actin. The domains were also expressed in E. histolytica cells along with green fluorescent protein. The results suggest that the N-terminal domain retains some of the properties, such as localization in phagocytic cups and activation of kinase. Crystal structure of EhCaBP1 with Phenylalanine revealed that the assembled domains, which are similar to Calmodulin N-terminal domain, bind to Phenylalanine revealing the binding mode to the target proteins. The C-terminal domain did not show any of the activities tested. However, over-expression in amebic cells led to a dominant negative phenotype. The results suggest that the two domains of EhCaBP1 are functionally and structurally different from each other. Both the domains are required for structural stability and full range of functional diversity

    Treatment of Chronic Asymptomatic Plasmodium falciparum Infection Does Not Increase the Risk of Clinical Malaria Upon Reinfection.

    Get PDF
    : Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. : In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. : Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. : These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria.<br/
    corecore