36 research outputs found

    Estimation of metabolite networks with regard to a specific covariable: applications to plant and human data

    Get PDF
    In systems biology, where a main goal is acquiring knowledge of biological systems, one of the challenges is inferring biochemical interactions from different molecular entities such as metabolites. In this area, the metabolome possesses a unique place for reflecting “true exposure” by being sensitive to variation coming from genetics, time, and environmental stimuli. While influenced by many different reactions, often the research interest needs to be focused on variation coming from a certain source, i.e. a certain covariable Xm . Objective Here, we use network analysis methods to recover a set of metabolite relationships, by finding metabolites sharing a similar relation to Xm . Metabolite values are based on information coming from individuals’ Xm status which might interact with other covariables. Methods Alternative to using the original metabolite values, the total information is decomposed by utilizing a linear regression model and the part relevant to Xm is further used. For two datasets, two different network estimation methods are considered. The first is weighted gene co-expression network analysis based on correlation coefficients. The second method is graphical LASSO based on partial correlations. Results We observed that when using the parts related to the specific covariable of interest, resulting estimated networks display higher interconnectedness. Additionally, several groups of biologically associated metabolites (very large density lipoproteins, lipoproteins, etc.) were identified in the human data example. Conclusions This work demonstrates how information on the study design can be incorporated to estimate metabolite networks. As a result, sets of interconnected metabolites can be clustered together with respect to their relation to a covariable of interest

    Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size

    Get PDF
    Abstract Background Co-expression has been widely used to identify novel regulatory relationships using high throughput measurements, such as microarray and RNA-seq data. Evaluation studies on co-expression network analysis methods mostly focus on networks of small or medium size of up to a few hundred nodes. For large networks, simulated expression data usually consist of hundreds or thousands of profiles with different perturbations or knock-outs, which is uncommon in real experiments due to their cost and the amount of work required. Thus, the performances of co-expression network analysis methods on large co-expression networks consisting of a few thousand nodes, with only a small number of profiles with a single perturbation, which more accurately reflect normal experimental conditions, are generally uncharacterized and unknown. Methods We proposed a novel network inference methods based on Relevance Low order Partial Correlation (RLowPC). RLowPC method uses a two-step approach to select on the high-confidence edges first by reducing the search space by only picking the top ranked genes from an intial partial correlation analysis and, then computes the partial correlations in the confined search space by only removing the linear dependencies from the shared neighbours, largely ignoring the genes showing lower association. Results We selected six co-expression-based methods with good performance in evaluation studies from the literature: Partial correlation, PCIT, ARACNE, MRNET, MRNETB and CLR. The evaluation of these methods was carried out on simulated time-series data with various network sizes ranging from 100 to 3000 nodes. Simulation results show low precision and recall for all of the above methods for large networks with a small number of expression profiles. We improved the inference significantly by refinement of the top weighted edges in the pre-inferred partial correlation networks using RLowPC. We found improved performance by partitioning large networks into smaller co-expressed modules when assessing the method performance within these modules. Conclusions The evaluation results show that current methods suffer from low precision and recall for large co-expression networks where only a small number of profiles are available. The proposed RLowPC method effectively reduces the indirect edges predicted as regulatory relationships and increases the precision of top ranked predictions. Partitioning large networks into smaller highly co-expressed modules also helps to improve the performance of network inference methods. The RLowPC R package for network construction, refinement and evaluation is available at GitHub: https://github.com/wyguo/RLowPC

    Mycorrhization of fagaceae forests within mediterranean ecosystems

    Get PDF
    Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio

    Microsatellite markers: what they mean and why they are so useful

    Full text link

    From correlation to causation: analysis of metabolomics data using systems biology approaches

    Get PDF
    corecore