439 research outputs found

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    Connecting solar flare hard X-ray spectra to in situ electron spectra A comparison of RHESSI and STEREO/SEPT observations

    Get PDF
    Aims. We aim to constrain the acceleration, injection, and transport processes of flare-accelerated energetic electrons by comparing their characteristics at the Sun with those injected into interplanetary space.Methods. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison.Results. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 min. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and the in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration.Conclusions. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays

    Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers

    Get PDF
    Particle acceleration, and the thermalisation of energetic particles, are fundamental processes across the universe. Whilst the Sun is an excellent object to study this phenomenon, since it is the most energetic particle accelerator in the Solar System, this phenomenon arises in many other astrophysical objects, such as active galactic nuclei, black holes, neutron stars, gamma ray bursts, solar and stellar coronae, accretion disks and planetary magnetospheres. Observations in the Extreme Ultraviolet (EUV) are essential for these studies but can only be made from space. Current spectrographs operating in the EUV use an entrance slit and cover the required field of view using a scanning mechanism. This results in a relatively slow image cadence in the order of minutes to capture inherently rapid and transient processes, and/or in the spectrograph slit ‘missing the action’. The application of image slicers for EUV integral field spectrographs is therefore revolutionary. The development of this technology will enable the observations of EUV spectra from an entire 2D field of view in seconds, over two orders of magnitude faster than what is currently possible. The Spectral Imaging of the Solar Atmosphere (SISA) instrument is the first integral field spectrograph proposed for observations at ∼180 Å combining the image slicer technology and curved diffraction gratings in a highly efficient and compact layout, while providing important spectroscopic diagnostics for the characterisation of solar coronal and flare plasmas. SISA’s characteristics, main challenges, and the on-going activities to enable the image slicer technology for EUV applications are presented in this paper

    Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data

    Get PDF
    The nine countries sharing the Amazon forest accounted for 89% of all malaria cases reported in the Americas in 2008. Remote sensing can help identify the environmental determinants of malaria transmission and their temporo-spatial evolution. Seventeen studies characterizing land cover or land use features, and relating them to malaria in the Amazon subregion, were identified. These were reviewed in order to improve the understanding of the land cover/use class roles in malaria transmission. The indicators affecting the transmission risk were summarized in terms of temporal components, landscape fragmentation and anthropic pressure. This review helps to define a framework for future studies aiming to characterize and monitor malaria

    A Voltage-Gated H+ Channel Underlying pH Homeostasis in Calcifying Coccolithophores

    Get PDF
    Marine coccolithophorid phytoplankton are major producers of biogenic calcite, playing a significant role in the global carbon cycle. Predicting the impacts of ocean acidification on coccolithophore calcification has received much recent attention and requires improved knowledge of cellular calcification mechanisms. Uniquely amongst calcifying organisms, coccolithophores produce calcified scales (coccoliths) in an intracellular compartment and secrete them to the cell surface, requiring large transcellular ionic fluxes to support calcification. In particular, intracellular calcite precipitation using HCO3− as the substrate generates equimolar quantities of H+ that must be rapidly removed to prevent cytoplasmic acidification. We have used electrophysiological approaches to identify a plasma membrane voltage-gated H+ conductance in Coccolithus pelagicus ssp braarudii with remarkably similar biophysical and functional properties to those found in metazoans. We show that both C. pelagicus and Emiliania huxleyi possess homologues of metazoan Hv1 H+ channels, which function as voltage-gated H+ channels when expressed in heterologous systems. Homologues of the coccolithophore H+ channels were also identified in a diversity of eukaryotes, suggesting a wide range of cellular roles for the Hv1 class of proteins. Using single cell imaging, we demonstrate that the coccolithophore H+ conductance mediates rapid H+ efflux and plays an important role in pH homeostasis in calcifying cells. The results demonstrate a novel cellular role for voltage gated H+ channels and provide mechanistic insight into biomineralisation by establishing a direct link between pH homeostasis and calcification. As the coccolithophore H+ conductance is dependent on the trans-membrane H+ electrochemical gradient, this mechanism will be directly impacted by, and may underlie adaptation to, ocean acidification. The presence of this H+ efflux pathway suggests that there is no obligate use of H+ derived from calcification for intracellular CO2 generation. Furthermore, the presence of Hv1 class ion channels in a wide range of extant eukaryote groups indicates they evolved in an early common ancestor

    Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology

    Get PDF
    Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens

    Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa

    Get PDF
    BACKGROUND: In vitro and in vivo resistance of Plasmodium falciparum to atovaquone or atovaquone-proguanil hydrochloride combination has been associated to two point mutations in the parasite cytochrome b (cytb) gene (Tyr268Ser and Tyr268Asn). However, little is known about the prevalence of codon-268 mutations in natural populations of P. falciparum without previous exposure to the drug in Africa. METHODS: The prevalence of codon-268 mutations in the cytb gene of African P. falciparum isolates from Nigeria, Malawi and Senegal, where atovaquone-proguanil has not been introduced for treatment of malaria was assessed. Genotyping of the cytb gene in isolates of P. falciparum was performed by PCR-restriction fragment length polymorphism and confirmed by sequencing. RESULTS: 295 samples from Nigeria (111), Malawi (91) and Senegal (93) were successfully analyzed for detection of either mutant Tyr268Ser or Tyr268Asn. No case of Ser268 or Asn268 was detected in cytb gene of parasites from Malawi or Senegal. However, Asn268 was detected in five out of 111 (4.5%) unexposed P. falciparum isolates from Nigeria. In addition, one out of these five mutant Asn268 isolates showed an additional cytb mutation leading to a Pro266Thr substitution inside the ubiquinone reduction site. CONCLUSION: No Tyr268Ser mutation is found in cytb of P. falciparum isolates from Nigeria, Malawi or Senegal. This study reports for the first time cytb Tyr268Asn mutation in unexposed P. falciparum isolates from Nigeria. The emergence in Africa of P. falciparum isolates with cytb Tyr268Asn mutation is a matter of serious concern. Continuous monitoring of atovaquone-proguanil resistant P. falciparum in Africa is warranted for the rational use of this new antimalarial drug, especially in non-immune travelers

    Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum</it>, has developed resistance to many of the drugs in use. The recommended treatment policy is now to use drug combinations. The atovaquone-proguanil (AP) drug combination, is one of the treatment and prophylaxis options. Atovaquone (ATQ) exerts its action by inhibiting plasmodial mitochondria electron transport at the level of the cytochrome bc1 complex. <it>Plasmodium falciparum in vitro </it>resistance to ATQ has been associated with specific point mutations in the region spanning codons 271-284 of the <it>cytochrome b </it>gene. ATQ -resistant <it>Plasmodium yoelii </it>and <it>Plasmodium berghei </it>lines have been obtained and resistant lines have amino acid mutations in their CYT <it>b </it>protein sequences. <it>Plasmodium chabaudi </it>model for studying drug-responses and drug-resistance selection is a very useful rodent malaria model but no ATQ resistant parasites have been reported so far. The aim of this study was to determine the ATQ sensitivity of the <it>P. chabaudi </it>clones, to select a resistant parasite line and to perform genotypic characterization of the <it>cytb </it>gene of these clones.</p> <p>Methods</p> <p>To select for ATQ resistance, <it>Plasmodium. chabaudi chabaudi </it>clones were exposed to gradually increasing concentrations of ATQ during several consecutive passages in mice. <it>Plasmodium chabaudi cytb </it>gene was amplified and sequenced.</p> <p>Results</p> <p>ATQ resistance was selected from the clone AS-3CQ. In order to confirm whether an heritable genetic mutation underlies the response of AS-ATQ to ATQ, the stability of the drug resistance phenotype in this clone was evaluated by measuring drug responses after (i) multiple blood passages in the absence of the drug, (ii) freeze/thawing of parasites in liquid nitrogen and (iii) transmission through a mosquito host, <it>Anopheles stephensi</it>. ATQ resistance phenotype of the drug-selected parasite clone kept unaltered. Therefore, ATQ resistance in clone AS-ATQ is genetically encoded. The Minimum Curative Dose of AS-ATQ showed a six-fold increase in MCD to ATQ relative to AS-3CQ.</p> <p>Conclusions</p> <p>A mutation was found on the <it>P. chabaudi cytb </it>gene from the AS-ATQ sample a substitution at the residue Tyr268 for an Asn, this mutation is homologous to the one found in <it>P. falciparum </it>isolates resistant to ATQ.</p

    STIX X-ray microflare observations during the Solar Orbiter commissioning phase

    Get PDF
    Context. The Spectrometer/Telescope for Imaging X-rays (STIX) is the hard X-ray instrument onboard Solar Orbiter designed to observe solar flares over a broad range of flare sizes. Aims. We report the first STIX observations of solar microflares recorded during the instrument commissioning phase in order to investigate the STIX performance at its detection limit. Methods. STIX uses hard X-ray imaging spectroscopy in the range between 4-150 keV to diagnose the hottest flare plasma and related nonthermal electrons. This first result paper focuses on the temporal and spectral evolution of STIX microflares occuring in the Active Region (AR) AR12765 in June 2020, and compares the STIX measurements with Earth-orbiting observatories such as the X-ray Sensor of the Geostationary Operational Environmental Satellite (GOES/XRS), the Atmospheric Imaging Assembly of the Solar Dynamics Observatory, and the X-ray Telescope of the Hinode mission. Results. For the observed microflares of the GOES A and B class, the STIX peak time at lowest energies is located in the impulsive phase of the flares, well before the GOES peak time. Such a behavior can either be explained by the higher sensitivity of STIX to higher temperatures compared to GOES, or due to the existence of a nonthermal component reaching down to low energies. The interpretation is inconclusive due to limited counting statistics for all but the largest flare in our sample. For this largest flare, the low-energy peak time is clearly due to thermal emission, and the nonthermal component seen at higher energies occurs even earlier. This suggests that the classic thermal explanation might also be favored for the majority of the smaller flares. In combination with EUV and soft X-ray observations, STIX corroborates earlier findings that an isothermal assumption is of limited validity. Future diagnostic efforts should focus on multi-wavelength studies to derive differential emission measure distributions over a wide range of temperatures to accurately describe the energetics of solar flares. Conclusions. Commissioning observations confirm that STIX is working as designed. As a rule of thumb, STIX detects flares as small as the GOES A class. For flares above the GOES B class, detailed spectral and imaging analyses can be performed

    Alpine ethnobotany in Italy: traditional knowledge of gastronomic and medicinal plants among the Occitans of the upper Varaita valley, Piedmont

    Get PDF
    A gastronomic and medical ethnobotanical study was conducted among the Occitan communities living in Blins/Bellino and Chianale, in the upper Val Varaita, in the Piedmontese Alps, North-Western Italy, and the traditional uses of 88 botanical taxa were recorded. Comparisons with and analysis of other ethnobotanical studies previously carried out in other Piemontese and surrounding areas, show that approximately one fourth of the botanical taxa quoted in this survey are also known in other surrounding Occitan valleys. It is also evident that traditional knowledge in the Varaita valley has been heavily eroded. This study also examined the local legal framework for the gathering of botanical taxa, and the potential utilization of the most quoted medicinal and food wild herbs in the local market, and suggests that the continuing widespread local collection from the wild of the aerial parts of Alpine wormwood for preparing liqueurs (Artemisia genipi, A. glacialis, and A. umbelliformis) should be seriously reconsidered in terms of sustainability, given the limited availability of these species, even though their collection is culturally salient in the entire study area
    corecore