83 research outputs found

    The impact of nuclear masses near N=82N=82 on rr-process abundances

    Full text link
    We have performed for the first time a complete rr-process mass sensitivity study in the N=82N=82 region. We take into account how an uncertainty in a single nuclear mass propagates to influence important quantities of neighboring nuclei, including Q-values and reaction rates. We demonstrate that nuclear mass uncertainties of ±0.5\pm0.5 MeV in the N=82N=82 region result in up to an order of magnitude local change in rr-process abundance predictions. We identify key nuclei in the study whose mass has a substantial impact on final rr-process abundances and could be measured at future radioactive beam facilities.Comment: 7 pages, 3 figures, submitte

    Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the rr-process calculations

    Full text link
    The rare-earth peak in the rr-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in rr-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. 158^{158}Nd, 160^{160}Pm, 162^{162}Sm, and 164166^{164-166}Gd have been measured for the first time and the precisions for 156^{156}Nd, 158^{158}Pm, 162,163^{162,163}Eu, 163^{163}Gd, and 164^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2nS_{2n} and neutron pairing energy metrics DnD_n. The data do not support the existence of a subshell closure at N=100N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated rr-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar rr-process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter

    Executive Summary of the Topical Program: Nuclear Isomers in the Era of FRIB

    Full text link
    We report on the Facility for Rare Isotope Beams (FRIB) Theory Alliance topical program "Nuclear Isomers in the Era of FRIB". We outline the many ways isomers influence and contribute to nuclear science and technology, especially in the four FRIB pillars: properties of rare isotopes, nuclear astrophysics, fundamental symmetries, and applications for the nation and society. We conclude with a resolution stating our recommendation that the nuclear physics community actively pursue isomer research. A white paper is forthcoming.Comment: 4 pages including reference

    ß-delayed neutron emission of r-process nuclei at the N=82 shell closure

    Get PDF
    Theoretical models of ß-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the ß-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of 132Sn are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at .Peer ReviewedArticle signat per 58 autors/es J. Liu, S. Bae, N.T. Brewer, C.G. Bruno, R. Caballero-Folch, P.J. Coleman-Smith, I. Dillmann, C. Domingo-Pardo, A. Fijalkowska, N. Fukuda, S. Go, C.J. Griffin, R. Grzywacz, J. Ha, L. J. Harkness-Brennan, T. Isobe, D. Kahl, L.H. Khiem, G.G. Kiss, A. Korgul, S. Kubono, M. Labiche, I. Lazarus, P. Morrall, M.R. Mumpower, N. Nepal, R.D. Page, M. Piersa , V.F.E. Pucknell , B.C. Rasco, B. Rubio, K.P. Rykaczewski , H. Sakurai , Y. Shimizu , D.W. Stracener, T. Sumikama , H. Suzuki, J.L. Tain , H. Takeda, A. Tarifeño-Saldivia, A. Tolosa-Delgado , M. Wolinska-Cichocka , R. YokoyamaPostprint (author's final draft

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Horizons: Nuclear Astrophysics in the 2020s and Beyond

    Get PDF
    Nuclear Astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.Comment: 96 pages. Submitted to Journal of Physics

    Horizons: nuclear astrophysics in the 2020s and beyond

    Get PDF
    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities

    The effect of clinical experience, judgment task difficulty and time pressure on nurses’ confidence calibration in a high fidelity clinical simulation

    Get PDF
    Background: Misplaced or poorly calibrated confidence in healthcare professionals’ judgments compromises the quality of health care. Using higher fidelity clinical simulations to elicit clinicians’ confidence 'calibration' (i.e. overconfidence or underconfidence) in more realistic settings is a promising but underutilized tactic. In this study we examine nurses’ calibration of confidence with judgment accuracy for critical event risk assessment judgments in a high fidelity simulated clinical environment. The study also explores the effects of clinical experience, task difficulty and time pressure on the relationship between confidence and accuracy. Methods: 63 student and 34 experienced nurses made dichotomous risk assessments on 25 scenarios simulated in a high fidelity clinical environment. Each nurse also assigned a score (0–100) reflecting the level of confidence in their judgments. Scenarios were derived from real patient cases and classified as easy or difficult judgment tasks. Nurses made half of their judgments under time pressure. Confidence calibration statistics were calculated and calibration curves generated. Results: Nurse students were underconfident (mean over/underconfidence score −1.05) and experienced nurses overconfident (mean over/underconfidence score 6.56), P = 0.01. No significant differences in calibration and resolution were found between the two groups (P = 0.80 and P = 0.51, respectively). There was a significant interaction between time pressure and task difficulty on confidence (P = 0.008); time pressure increased confidence in easy cases but reduced confidence in difficult cases. Time pressure had no effect on confidence or accuracy. Judgment task difficulty impacted significantly on nurses’ judgmental accuracy and confidence. A 'hard-easy' effect was observed: nurses were overconfident in difficult judgments and underconfident in easy judgments. Conclusion: Nurses were poorly calibrated when making risk assessment judgments in a high fidelity simulated setting. Nurses with more experience tended toward overconfidence. Whilst time pressure had little effect on calibration, nurses’ over/underconfidence varied significantly with the degree of task difficulty. More research is required to identify strategies to minimize such cognitive biases
    corecore