28 research outputs found

    Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e29813, doi:10.1371/journal.pone.0029813.Melanopsin, the receptor molecule that underlies light sensitivity in mammalian ‘circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.This work was supported by the National Science Foundation of the USA (grant 0918930)

    Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of <it>Emblica officinalis </it>fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts.</p> <p>Methods</p> <p>The effects of extracts from <it>Emblica officinalis </it>on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of <it>Emblica officinalis </it>extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, <it>in vitro </it>effects of <it>Emblica officinalis </it>extracts on NF-kB transcription factor activity were determined by gel shift experiments.</p> <p>Results</p> <p>Extracts of <it>Emblica officinalis </it>were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. <it>Emblica officinalis </it>increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that <it>Emblica officinalis </it>extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that <it>Emblica officinalis </it>extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of <it>Emblica officinalis </it>on the expression levels of interleukin-6, a NF-kB specific target gene.</p> <p>Conclusion</p> <p>Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of <it>Emblica officinalis </it>extracts as an alternative tool for therapy applied to bone diseases.</p

    Hyperpolarization-Activated Current (Ih) in Ganglion-Cell Photoreceptors

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and serve as the primary retinal drivers of non-image-forming visual functions such as circadian photoentrainment, the pupillary light reflex, and suppression of melatonin production in the pineal. Past electrophysiological studies of these cells have focused on their intrinsic photosensitivity and synaptic inputs. Much less is known about their voltage-gated channels and how these might shape their output to non-image-forming visual centers. Here, we show that rat ipRGCs retrolabeled from the suprachiasmatic nucleus (SCN) express a hyperpolarization-activated inwardly-rectifying current (Ih). This current is blocked by the known Ih blockers ZD7288 and extracellular cesium. As in other systems, including other retinal ganglion cells, Ih in ipRGCs is characterized by slow kinetics and a slightly greater permeability for K+ than for Na+. Unlike in other systems, however, Ih in ipRGCs apparently does not actively contribute to resting membrane potential. We also explore non-specific effects of the common Ih blocker ZD7288 on rebound depolarization and evoked spiking and discuss possible functional roles of Ih in non-image-forming vision. This study is the first to characterize Ih in a well-defined population of retinal ganglion cells, namely SCN-projecting ipRGCs

    A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure

    Get PDF
    Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined similar to 18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p <5 x 10(-8)) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p <5 x 10(-8)). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling MSRA, EBF2).Peer reviewe

    Working Memory Underpins Cognitive Development, Learning, and Education

    Get PDF
    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice

    Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen

    No full text
    Background. Drug-resistant tuberculous meningitis (TBM) is difficult to diagnose and treat. Mortality is high and optimal treatment is unknown. We compared clinical outcomes of drug-resistant and -susceptible TBM treated with either standard or intensified antituberculosis treatment. Methods. We analyzed the influence of Mycobacterium tuberculosis drug resistance on the outcomes of patients with TBM enrolled into a randomized controlled trial comparing a standard, 9-month antituberculosis regimen (containing rifampicin 10 mg/kg/day) with an intensified regimen with higher-dose rifampicin (15 mg/kg/day) and levofloxacin (20 mg/kg/day) for the first 8 weeks. The primary endpoint of the trial was 9-month survival. In this subgroup analysis, resistance categories were predefined as multidrug resistant (MDR), isoniazid resistant, rifampicin susceptible (INH-R), and susceptible to rifampicin and isoniazid (INH-S + RIF-S). Outcome by resistance categories and response to intensified treatment were compared and estimated by Cox regression. Results. Of 817 randomized patients, 322 had a known drug resistance profile. INH-R was found in 86 (26.7%) patients, MDR in 15 (4.7%) patients, rifampicin monoresistance in 1 patient (0.3%), and INH-S + RIF-S in 220 (68.3%) patients. Multivariable regression showed that MDR (hazard ratio [HR], 5.91 [95% confidence interval {CI}, 3.00–11.6]), P &lt; .001), was an independent predictor of death. INH-R had a significant association with the combined outcome of new neurological events or death (HR, 1.58 [95% CI, 1.11–2.23]). Adjusted Cox regression, corrected for treatment adjustments, showed that intensified treatment was significantly associated with improved survival (HR, 0.34 [95% CI, .15–.76], P = .01) in INH-R TBM. Conclusions. Early intensified treatment improved survival in patients with INH-R TBM. Targeted regimens for drug-resistant TBM should be further explored

    Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen

    No full text
    Background. Drug-resistant tuberculous meningitis (TBM) is difficult to diagnose and treat. Mortality is high and optimal treatment is unknown. We compared clinical outcomes of drug-resistant and -susceptible TBM treated with either standard or intensified antituberculosis treatment. Methods. We analyzed the influence of Mycobacterium tuberculosis drug resistance on the outcomes of patients with TBM enrolled into a randomized controlled trial comparing a standard, 9-month antituberculosis regimen (containing rifampicin 10 mg/kg/day) with an intensified regimen with higher-dose rifampicin (15 mg/kg/day) and levofloxacin (20 mg/kg/day) for the first 8 weeks. The primary endpoint of the trial was 9-month survival. In this subgroup analysis, resistance categories were predefined as multidrug resistant (MDR), isoniazid resistant, rifampicin susceptible (INH-R), and susceptible to rifampicin and isoniazid (INH-S + RIF-S). Outcome by resistance categories and response to intensified treatment were compared and estimated by Cox regression. Results. Of 817 randomized patients, 322 had a known drug resistance profile. INH-R was found in 86 (26.7%) patients, MDR in 15 (4.7%) patients, rifampicin monoresistance in 1 patient (0.3%), and INH-S + RIF-S in 220 (68.3%) patients. Multivariable regression showed that MDR (hazard ratio [HR], 5.91 [95% confidence interval {CI}, 3.00–11.6]), P Conclusions. Early intensified treatment improved survival in patients with INH-R TBM. Targeted regimens for drug-resistant TBM should be further explored
    corecore