45 research outputs found

    An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

    Get PDF
    Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T0 lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Search for Lepton-Universality Violation in B^{+}→K^{+}ℓ^{+}ℓ^{-} Decays.

    Get PDF
    A measurement of the ratio of branching fractions of the decays B^{+}→K^{+}μ^{+}μ^{-} and B^{+}→K^{+}e^{+}e^{-} is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0  fb^{-1} recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1<q^{2}<6.0  GeV^{2}/c^{4} the ratio of branching fractions is measured to be R_{K}=0.846_{-0.054}^{+0.060}_{-0.014}^{+0.016}, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R_{K} to date and is compatible with the standard model at the level of 2.5 standard deviations

    Search for time-dependent CPCP violation in D0K+KD^0 \to K^+ K^- and D0π+πD^0 \to π^+ π^- decays

    Get PDF
    A search for time-dependent violation of the charge-parity symmetry in D0K+KD^0 \to K^+ K^- and D0π+πD^0 \to \pi^+ \pi^- decays is performed at the LHCb experiment using proton-proton collision data recorded from 2015 to 2018 at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb1^{-1}. The D0D^0 meson is required to originate from a D(2010)+D0π+D^*(2010)^+ \to D^0 \pi^+ decay, such that its flavour at production is identified by the charge of the accompanying pion. The slope of the time-dependent asymmetry of the decay rates of D0D^0 and Dˉ0\bar{D}^0 mesons into the final states under consideration is measured to be ΔYK+K=(2.3±1.5±0.3)×104\Delta Y_{K^+ K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}, ΔYπ+π=(4.0±2.8±0.4)×104\Delta Y_{\pi^+ \pi^-} = (-4.0 \pm 2.8 \pm 0.4)\times 10^{-4}, where the first uncertainties are statistical and the second are systematic. These results are compatible with the conservation of the charge-parity symmetry at the level of 2 standard deviations and improve the precision by nearly a factor of two
    corecore