115 research outputs found

    Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence

    Get PDF
    Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein. © 2014 Xue et al

    Molecular Genetic Analysis of 103 Sporadic Colorectal Tumours in Czech Patients

    Get PDF
    The Czech Republic has one of the highest incidences of colorectal cancer (CRC) in Europe. To evaluate whether sporadic CRCs in Czech patients have specific mutational profiles we analysed somatic genetic changes in known CRC genes (APC, KRAS, TP53, CTNNB1, MUTYH and BRAF, loss of heterozygosity (LOH) at the APC locus, microsatellite instability (MSI), and methylation of the MLH1 promoter) in 103 tumours from 102 individuals. The most frequently mutated gene was APC (68.9% of tumours), followed by KRAS (31.1%), TP53 (27.2%), BRAF (8.7%) and CTNNB1 (1.9%). Heterozygous germline MUTYH mutations in 2 patients were unlikely to contribute to the development of their CRCs. LOH at the APC locus was found in 34.3% of tumours, MSI in 24.3% and MLH1 methylation in 12.7%. Seven tumours (6.9%) were without any changes in the genes tested. The analysis yielded several findings possibly specific for the Czech cohort. Somatic APC mutations did not cluster in the mutation cluster region (MCR). Tumours with MSI but no MLH1 methylation showed earlier onset and more severe mutational profiles compared to MSI tumours with MLH1 methylation. TP53 mutations were predominantly located outside the hot spots, and transitions were underrepresented. Our analysis supports the observation that germline MUTYH mutations are rare in Czech individuals with sporadic CRCs. Our findings suggest the influence of specific ethnic genetic factors and/or lifestyle and dietary habits typical for the Czech population on the development of these cancers

    A Chaperone Trap Contributes to the Onset of Cystic Fibrosis

    Get PDF
    Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF

    Transforming growth factor-β and breast cancer: Tumor promoting effects of transforming growth factor-β

    Get PDF
    The transforming growth factor (TGF)-βs are potent growth inhibitors of normal epithelial cells. In established tumor cell systems, however, the preponderant experimental evidence suggests that TGF-βs can foster tumor-host interactions that indirectly support the viability and/or progression of cancer cells. The timing of this 'TGF-β switch' during the progressive transformation of epithelial cells is not clear. More recent evidence also suggests that autocrine TGF-β signaling is operative in some tumor cells, and can also contribute to tumor invasiveness and metastases independent of an effect on nontumor cells. The dissociation of antiproliferative and matrix associated effects of autocrine TGF-β signaling at a transcriptional level provides for a mechanism(s) by which cancer cells can selectively use this signaling pathway for tumor progression. Data in support of the cellular and molecular mechanisms by which TGF-β signaling can accelerate the natural history of tumors will be reviewed in this section

    Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.

    Get PDF
    BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis.

    Get PDF
    Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL consortium. Associations between genetic variants and prostate cancer case status, stage and grade were assessed by logistic regression and with all-cause and prostate cancer-specific mortality using Cox proportional hazards regression. There was no clear evidence that a genetic risk score combining rs4410790 and rs2472297 was associated with prostate cancer risk (OR per additional coffee increasing allele: 1.01, 95% CI: 0.98,1.03) or having high-grade compared to low-grade disease (OR: 1.01, 95% CI: 0.97,1.04). There was some evidence that the genetic risk score was associated with higher odds of having nonlocalised compared to localised stage disease (OR: 1.03, 95% CI: 1.01, 1.06). Amongst men with prostate cancer, there was no clear association between the genetic risk score and all-cause mortality (HR: 1.00, 95% CI: 0.97,1.04) or prostate cancer-specific mortality (HR: 1.03, 95% CI: 0.98,1.08). These results, which should have less bias from confounding than observational estimates, are not consistent with a substantial effect of coffee consumption on reducing prostate cancer incidence or progression

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF

    Multilevel genomics of colorectal cancers with microsatellite instability—clinical impact of JAK1 mutations and consensus molecular subtype 1

    Get PDF
    Background Approximately 15% of primary colorectal cancers have DNA mismatch repair deficiency, causing a complex genome with thousands of small mutations—the microsatellite instability (MSI) phenotype. We investigated molecular heterogeneity and tumor immunogenicity in relation to clinical endpoints within this distinct subtype of colorectal cancers. Methods A total of 333 primary MSI+ colorectal tumors from multiple cohorts were analyzed by multilevel genomics and computational modeling—including mutation profiling, clonality modeling, and neoantigen prediction in a subset of the tumors, as well as gene expression profiling for consensus molecular subtypes (CMS) and immune cell infiltration. Results Novel, frequent frameshift mutations in four cancer-critical genes were identified by deep exome sequencing, including in CRTC1, BCL9, JAK1, and PTCH1. JAK1 loss-of-function mutations were validated with an overall frequency of 20% in Norwegian and British patients, and mutated tumors had up-regulation of transcriptional signatures associated with resistance to anti-PD-1 treatment. Clonality analyses revealed a high level of intra-tumor heterogeneity; however, this was not associated with disease progression. Among the MSI+ tumors, the total mutation load correlated with the number of predicted neoantigens (P = 4 × 10−5), but not with immune cell infiltration—this was dependent on the CMS class; MSI+ tumors in CMS1 were highly immunogenic compared to MSI+ tumors in CMS2-4. Both JAK1 mutations and CMS1 were favorable prognostic factors (hazard ratios 0.2 [0.05–0.9] and 0.4 [0.2–0.9], respectively, P = 0.03 and 0.02). Conclusions Multilevel genomic analyses of MSI+ colorectal cancer revealed molecular heterogeneity with clinical relevance, including tumor immunogenicity and a favorable patient outcome associated with JAK1 mutations and the transcriptomic subgroup CMS1, emphasizing the potential for prognostic stratification of this clinically important subtype. See related research highlight by Samstein and Chan 10.1186/s13073-017-0438-
    • …
    corecore