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Abstract

Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6
protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory
factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic
fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic
mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are
not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the
molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of
orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ
sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-
causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of
this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes
in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-
state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized
cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the
ABCC6 protein.
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Introduction

Pseudoxanthoma elasticum (PXE) is a disease characterized by

the progressive mineralization of elastic fibers. [1,2] The

mineralization and eventual degradation of these fibers cause a

loss of elasticity in a variety of affected tissues. While the molecular

mechanisms leading to the mineralization processes are unknown,

mutations in the ABCC6 ATP-binding cassette (ABC-) transporter

have been shown to be causative of the disease. [3,4] To date,

more than 250 coding and noncoding mutations have been

identified in ABCC6 that are associated with PXE. [5–7] The

resulting loss of protein function in the basolateral membrane

putatively alters the secretion of one or more unknown circulatory

factors that systemically affect the mineralization of elastic fibers.

[8] This mineralization and subsequent degradation of elastic

fibers lead to loss of vascular tone, premature arteriosclerosis,

laxity in the skin, and loss of vision, resulting from neovascular-

iziation in the eye. [2].

The ABC-transporter family of proteins is responsible for the

secretion of a variety of biological molecules across the cell

membrane in an ATP dependent manner. [9] Structurally, the

proteins are composed of at least four core domains: two

transmembrane domains (TMDs) and two nucleotide-binding

domains (NBDs). ATP binding between the NBDs induces their

dimerization, which, in turn leads to ATP hydrolysis. [10–12]

These ATP-induced conformational changes are coupled through

a conserved interface to the TMDs, which utilize the energy of

ATP binding and hydrolysis to facilitate solute transport. [13,14]

In addition, the long form ABCC subfamily members, including

ABCC6, contain an additional N-terminal transmembrane

domain whose function is not well defined. [9] Alterations in

protein biosynthesis, protein trafficking and localization, ATP

binding and hydrolysis, and solute recognition and binding have

all been implicated as molecular pathologies associated with ABC-

transporter mutations [15–18].

The trafficking of multiple ABC transporters is regulated, in

part, by C-terminal PDZ (PSD95/Dlg/ZO-1) ligands. [19–24]

The short C-terminal peptide sequences are bound by PDZ

domain-containing proteins. These multi-domain proteins facili-

tate protein-protein interactions by acting as scaffolds, binding

their respective PDZ ligands and holding their partners in close

physical proximity. These associations have been shown to

regulate protein activity, protein stability and protein mobility in

the membrane. [22–25] Multiple modes of peptide binding have

been ascribed to different classes of PDZ domains. [26] Specificity

for these interactions is thought to come from both the sequences

of the different ligands and subcellular localization of their PDZ-

domain containing protein partners. Within the ABCC subfamily

of human ABC-transporters, multiple PDZ ligands have been

identified and characterized. Alteration to these sequences results
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in mislocalization, reduced stability and increased mobility in

other members of the ABCC subfamily, including the multi-drug

transporters and CFTR [22,25,27–29].

To evaluate the role of the C-terminal sequence from ABCC6,

mutations to the PDZ-like sequence were generated and protein

biosynthesis, trafficking and turnover were analyzed in both non-

polarized and polarized cells. Deletion of the C-terminal six amino

acids, which constitute a PDZ-like ligand sequence, resulted in a

significant decrease in steady state levels of ABCC6. These

changes were the result of mislocalization within the cell and an

increase in protein degradation. In polarized cells, deletion of the

C-terminal residues resulted in inefficient targeting to the

basolateral membrane. These data demonstrate that the non-

canonical PDZ-like sequence found at the C-terminus of ABCC6

contributes to its regulation in the cell. Characterization of the

trafficking and regulation of ABCC6 by its physiological binding

partners will provide additional insight into the molecular

regulation of ABCC6 in normal physiology and the pathophys-

iology associated with PXE.

Materials and Methods

Cloning and Site-directed Mutagenesis
The full-length ABCC6 open reading frame was cloned into

pcDNA3.1 (Invitrogen) for CMV-driven expression in mammalian

cells. PCR-based site directed mutagenesis was used to introduce

specific mutations in the pcDNA-ABCC6 plasmid (QuikChange,

Stratagene). The BLAP tagged ABCC6 protein was constructed by

PCR insertion of the acceptor peptide sequence (GLNDIFEAQ-

KIEWHE) after Pro4 in the native ABCC6 sequence in the

pcDNA3.1 vector. The pBUDD-BirA-KDEL plasmid was a

generous gift from Dr. Daniel C. Devor (University of Pittsburgh).

Site directed mutagenesis and full-length sequences were con-

firmed by automated DNA sequencing.

Cell Culture and Western Blotting
HEK and MDCK cells were obtained from ATCC. HEK293

cells were routinely maintained in DMEM (Gibco) supplemented

with 10% v/v FBS, 100 units/ml penicillin and 100 mg/ml

streptomycin at 37uC in a 5% CO2 environment. MDCK cells

were routinely maintained in aMEM (Gibco) supplemented with

10% v/v FBS, 100 units/ml penicillin and 100 mg/ml streptomy-

cin at 37uC in a 5% CO2 environment. Cells were transfected

using either Fugene6 (Promega) or XtremeGene9 (Roche) lipid

transfection reagents. For HEK293 cells, cells were transfected

following manufacturers’ protocols and lysed 48–72 hours post-

transfection for analysis. Cell surface biotinylation experiments

were performed using Sulfo-NHS-Biotin (Pierce) following man-

ufacturers’ protocols. For expression in MDCK cells, cells were

transfected at 80% confluence on 0.2 micron Transwell inserts

(Costar). Cells were allowed to polarize for 4 days prior to analysis.

Polarization was confirmed by staining with the tight junction

marker ZO-1. For western blotting, cells were lysed in RIPA

(Millipore) and lysates were cleared by centrifugation at 21,000 G

for 10 minutes at 4uC. Lysates were separated by SDS-PAGE on

Tris-glycine gels and transferred to PVDF membrane. At least 3

independent experiments were performed for each analysis and

representative western blots are shown.

Antibodies and Labeling Reagents
Western blotting and immunofluorescence for ABCC6 were

performed using the rat monoclonal a-ABCC6 antibody M6II-7

or M6II-31 (Santa Cruz), which were raised against a portion of

TMD2. Polyclonal a-ZO1 antibody (Cell Signalling) was used in

immunofluorescence to confirm polarization of the MDCK cells.

A mouse monoclonal a-tubulin antibody (Sigma-Aldrich) or a-
PARP1 (GeneTex) were used for loading controls. AlexaFluor488

and 555-conjugated streptavidin were used to label the BLAP-

containing ABCC6 constructs at the cell surface (Invitrogen).

Phalloidin and WGA (Invitrogen) were used as cell surface

markers; DAPI (Sigma-Aldrich) was used to stain nuclei.

Immunofluorescence, Fluorescence Labeling and
Fluorescent Microscopy
HEK293 and MDCK cells expressing the pcDNA-ABCC6

proteins were utilized for immunofluorescence. Following expres-

sion, cells were washed three times in PBS at 4uC and fixed using

2% PFA in PBS for 10 minutes at 4uC. Cells were blocked with

BSA and stained using the antibodies described above. Alexa-

Fluor-conjugated secondary antibodies were used to visualize the

ABCC6 and ZO1 proteins (Invitrogen). Immunofluorescence was

visualized on either an Olympus IX81 fluorescence microscope or

a Fluoview 1000 confocal microscope. Immunofluorescence

images were collected from multiple fields from at least four

independent experiments. At least 16 fields were evaluated for

each of the conditions evaluated. Blind experiments were

performed to validate the differences in observed trafficking and

expression of the various ABCC6 constructs.

The pcDNA-BLAP-ABCC6 protein was utilized to evaluate cell

surface ABCC6. HEK293 or MDCK cells were seeded onto glass

coverslips pretreated with poly-lysine (Sigma). Cells were co-

transfected with the pcDNA-BLAP-ABCC6 plasmid and the

pBUDD-BirA-KDEL plasmid and proteins were allowed to

express for 24–48 hours in HEK293 cells and for 5 days in

MDCK cells. Following expression, the media was aspirated from

the cells and the cells were washed with PBS with 2% BSA on ice.

Alexafluor conjugated streptavidin was incubated with the cells in

a solution of PBS and 2% BSA for 10 minutes on ice. The labeling

mix was aspirated and the cells were washed three times with PBS

to remove unbound streptavidin. The cells were either fixed with

2% PFA in PBS or returned to the CO2 incubator for kinetic

experiments and fixed after specific incubation periods.

NBD Protein Expression and Analysis
The boundaries of the NBD2 domain were predicted utilizing

multiple sequence alignments and structural analysis of extant

NBD crystal structures. The predicted coding sequence was PCR

amplified and cloned into the pSmt3 vector, which includes an N-

terminal 6x His tag and the yeast SUMO protein, Smt3, to aid in

solubility. [30] Expression and purification followed procedures

previously described for the NBDs from CFTR. [31,32] E coli

BL21 (DE3) cells were transformed with the expression plasmids

and single colonies were picked to grow an inoculum overnight at

37uC. A one liter expression culture of either the wildtype or

mutant NBD2 was inoculated and the cultures were grown at

37uC until an OD600 of ,1.0 in LB broth. Protein expression was

induced with 1 mM IPTG and the cultures were shifted to 15uC
for expression overnight. Cells were harvested by centrifugation

and lysed by sonication in ice cold binding buffer (50 m Tris,

150 mM NaCl, 10% w/v glycerol, pH 7.6) with 2 mM ATP and

1 mM beta-mercaptoethanol. The lysate was clarified by centri-

fugation (40,000 G RCF, 4uC, 40 minutes) and the soluble fraction

was loaded onto a Ni-NTA column (GE HealthSciences) pre-

equilibrated in binding buffer lacking ATP. The protein was

washed and eluted in binding buffer supplemented with 60 or

400 mM imidazole, respectively. Fractions were collected and

samples containing NBD2 protein were immediately supplement-

ed with 2 mM ATP and 1 mM DTT (final concentrations). The
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fractions were pooled and loaded onto a HiPrep Sephacryl S-300

gel filtration column (GE HealthSciences) equilibrated with

binding buffer supplemented with 2 mM ATP and 1 mM DTT.

Fractions containing NBD2 were pooled and digested with Ulp1

to liberate the N-terminal His-Smt3 tags and the protein was

applied to a Ni-NTA column equilibrated with binding buffer

supplemented with 2 mM ATP and 1 mM DTT. The Ulp1 and

Smt3 proteins bound to the Ni-NTA column via their respective

His tags and the flow through containing NBD2 as collected,

concentrated and stored at280uC prior to use. Circular dichroism

(CD) spectroscopy and analytical gel filtration chromatography

(GFC) were performed to assess changes in secondary structure

and hydrodynamic radius. CD spectra were collected on a Jasco

810 spectropolarimeter, as previously described. [33] Analytical

GFC was performed using a Superdex S75 10/300 GL (GE

HealthSciences) column to evaluate changes in hydrodynamic

radius.

Results

C-terminally Regulated Trafficking of the ABCC6 Protein
ABCC6 is a member of the ABC-transporter family of proteins

and is composed of five domains (Figure 1A). [34] Three

transmembrane domains and two cytosolic, nucleotide-binding

domains are encoded by a single polypeptide and putatively form

the functional unit for transport. The two core transmembrane

domains (TMD1 and TMD2) putatively provide the channel for

substrate movement across the membrane. In addition an

accessory transmembrane domain (TMD0) is located at the N-

terminus. The function of this domain is unknown. Two

nucleotide-binding domains are located intracellularly and are

associated with ATP binding and hydrolysis, providing the energy

for substrate transport.

A growing number of disease-associated mutations have been

identified in the open reading frame of ABCC6. [5,6,35–37]

Sequence analysis of the C-terminus shows a high degree of

similarity to the PDZ ligand sequence identified in other ABCC

family members (Figure 1B). These sequences have been shown to

regulate subcellular localization, membrane stability, membrane

motility and protein-protein interactions in other ABCC family

members. [23–25,27] The PDZ-like sequence in ABCC6 is highly

conserved across species and includes the canonical Type I PDZ

motif (acidic-polar-X-hydrophobic) found in closely related

proteins and a C-terminal valine. [25,38] The presence of this

Val would putatively alter the binding of the PDZ ligand with its

cognate partner in standard Type I PDZ ligand-domain interac-

tions. However, multiple binding modes have been described

structurally and diverge from the classical Type I binding. It is

possible that the C-terminal valine would be accommodated in

other binding modes with PDZ-domain containing proteins.

[39,40].

To investigate the role of this PDZ-like sequence in the

regulation of ABCC6 biosynthesis and trafficking, the C-terminal

sequence was deleted by PCR-based site directed mutagenesis and

protein trafficking was assessed by western blotting after expression

in HEK293 cells. The wildtype protein expressed robustly and was

detected as two distinct bands by western blotting resulting from

changes in glycosylation occurring in the ER and Golgi (Figure 1C,

D). Under steady state conditions, the lower molecular weight

species, band B, was found to be the core glycosylated, ER form of

the protein. The higher molecular weight band was insensitive to

EndoH but sensitive to PNGaseF digestion, consistent with protein

modification by complex glycosylation in the Golgi. To further

confirm these species were the result of changes in glycosylation,

the single glycosylation site was mutated (N15D) and expressed.

Digestion with both EndoH and PNGaseF resulted in no changes

in electrophoretic mobility. Migration of the single N15D protein

band was consistent with the fully deglycosylated protein, band A,

in the wildtype ABCC6 expressing cells.

Deletion of the six C-terminal amino acids (D6-COOH), which

includes the complete PDZ ligands found in other ABCC family

members, showed dramatic changes in both protein biosynthesis

and protein trafficking as measured by western blotting (Figure 1C,

D). Steady state D6-COOH protein levels were reduced relative to

the wildtype protein (Figure 1C). Both band B and band C species

were reduced relative to wildtype. In addition, the quantity of

band C protein was significantly decreased relative to the quantity

of the band B form, consistent with either rapid turnover of the

fully glycosylated protein or a decrease in biosynthetic efficiency

and trafficking.

Cell surface biotinylation was used to assess the plasma

membrane expression of ABCC6. Cell surface biotinylation of

cells expressing the wildtype ABCC6 showed the presence of

protein at the surface of HEK293 cells (Figure 1E). The protein

appeared as a single band, consistent with the trafficking of the

complexly glycosylated ABCC6 to the plasma membrane.

Similarly, the D6-COOH ABCC6 protein also showed cell surface

localization by biotinylation. As with the analysis of total steady-

state protein levels, the quantity of cell surface D6-COOH ABCC6

was reduced when compared to the wildtype protein. Control

cells, which were mock transfected, showed no detectable

production of ABCC6 in both the total and cell surface fractions.

Tubulin was present only in the total lysate fractions, consistent

with its intracellular localization and protection from the

biotinylation reaction.

Immunofluorescence was used to verify the subcellular locali-

zation of these proteins. The wildtype protein showed robust and

diffuse expression in HEK293 cells, consistent with its trafficking

through the secretory pathway and to the membrane (Figure 1F).

Membrane localization was confirmed by colocalization with

phalloidin. In contrast, the D6-COOH protein showed decreases

in the number of stainable cells and the fluorescence intensity in

cells expressing the protein (Figure 1F). Further, cells expressing

the D6-COOH protein showed predominantly intracellular

fluorescence, consistent with retention of the mutant in the ER

seen by western blotting. Colocalization studies with BiP indicated

the mutant protein was localized predominantly to the ER (data

not shown). These data were consistent with the changes in steady

state signal seen by western blotting of the D6-COOH protein and

the reduction in complexly glycosylated species. No observable

changes in immunofluorescence were seen between the wildtype

and N15D glycosylation mutant (data not shown).

Finally, to assess trafficking in polarized cells, the wildtype and

D6-COOH proteins were expressed in MDCK cells and assessed

by immunofluorescence. Previous reports of wildtype ABCC6

trafficking indicate the ABCC6 protein is targeted to the

basolateral membrane. [41] Consistent with this, the wildtype

ABCC6 showed preferential targeting to the basolateral mem-

brane in the MDCK cells (Figure 1G). Polarization of the MDCK

monolayer was confirmed by staining with ZO1. Deletion of the

PDZ-like sequence resulted in decreased targeting of the ABCC6

protein to the basolateral membrane and an increase intracellular

protein. The predominant population of the D6-COOH protein

colocalized with BiP, consistent with its accumulation in the ER

and the immunofluorescence seen in HEK293 cells (data not

shown).

Regulation of ABCC6 Stability by a C-terminal Sequence
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Figure 1. Alteration of ABCC6 trafficking by the PDZ-like C-terminus. To evaluate the potential role of the PDZ-like sequences at the C-
terminus of ABCC6, wildtype and mutant proteins were expressed in HEK293 cells and evaluated by western blotting and immunofluorescence. A, a
cartoon illustrating the domain organization and topology of ABCC6 is shown. ABCC6 contains three transmembrane domains and two nucleotide-
binding domains. The single glycosylation site is represented as Y in the extracellular N-terminus. The insertion site for the biotin ligase acceptor
peptide is also shown in the N-terminus at proline 4. B, a sequence alignment of known PDZ-containing ABCC family members is shown. The Type I

Regulation of ABCC6 Stability by a C-terminal Sequence
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NBD2 Structure
Based on comparisons with the structures of other NBD

proteins, the PDZ-like sequence is located at the C-terminus of the

second NBD in ABCC6 and is not predicted to contribute to the

core of the NBD fold. [31,32,42] To evaluate the possibility that

altered NBD structure resulted from the D6-COOH deletion, the

NBD2 domain was expressed and purified from E. coli for in vitro

structural analyses. The wildtype and mutant NBD2 proteins

expressed robustly and were purified using Ni-NTA and gel

filtration chromatography. Changes in secondary structure of the

purified NBD2 proteins were first evaluated using CD spectros-

copy. The wildtype NBD2 proteins produced CD spectra

consistent with mixed a/b-secondary structure (Figure 2A). These
spectra were qualitatively consistent with those of solved crystal

structures of other NBD proteins. [43] The D6-COOH NBD2

protein spectra showed no significant deviation from those of the

wildtype NBD2 proteins, consistent with its folding to a similar

mixed a/b structure. To evaluate the tertiary structure of the

wildtype and mutant NBD2 proteins, hydrodynamic radii were

measured using analytical GFC (Figure 2B). The wildtype protein

eluted as a single symmetrical peak, consistent with a protein of

,25 kDa molecular weight. The elution chromatographs showed

no significant protein in either the column void or outside of the

monomer peak, consistent with a highly purified and homoge-

neous sample. Elution volumes were calibrated using GFC

standards to confirm apparent molecular weights. The mutant

NBD2 protein eluted with a symmetrical profile similar to that of

the wildtype NBD2. No significant protein was seen in the column

void or outside of a single predominant peak corresponding to the

monomeric NBD.

Low Temperature Rescue of the Truncated ABCC6
Protein
To further elucidate the effects of the D6-COOH mutant, the

ABCC6 proteins were expressed in HEK293 cells at low

temperature. Previous studies of multiple membrane proteins

suggest that biosynthetic and localization defects can often be

corrected by expression at sub-physiological temperatures. [44–

47] Expression of the wildtype and mutant ABCC6 proteins was

performed at 27uC for 72–96 hours. Western blotting of the

wildtype and mutant ABCC6 proteins showed dramatic changes

in expression at low temperature. The wildtype protein expressed

robustly, though changes in the relative levels of band B and Band

C were observed (Figure 3A). Specifically, the quantity of band B

protein was consistently increased when compared to the quantity

of band C wildtype protein. This was consistent with an

accumulation of the ER-associated form of the protein. In

addition, the mutant protein showed an increase in both band B

and band C forms of the protein (Figure 3A). The increase in

expression was seen as both an increase in total steady state protein

and an accumulation of the upper molecular weight, band C

species.

The accumulation of the band C form of the protein was

consistent with an increase in protein trafficking or a stabilization

of the mature form of the protein in post-ER compartments.

Immunofluorescence revealed similar changes in subcellular

localization of the wildtype and mutant ABCC6 proteins

(Figure 3B). The wildtype protein showed subtle increases in the

quantities of intracellular protein by immunofluorescence. More

strikingly, the mutant protein showed an increase in total ABCC6

protein staining. In addition, the D6-COOH protein appeared

more diffuse and colocalization with membrane markers was

increased after expression at 27uC. These data were consistent

with an increase in the mutant protein at the cell surface.

C-terminal Regulation of ABCC6 Degradation
The changes in steady state protein levels were consistent with

an increase in protein turnover associated with the D6-COOH

mutation. To further evaluate how changes in protein turnover

may be regulated by the PDZ-like sequence, cyclohexamide chase

experiments were performed on HEK293 cells expressing

ABCC6. Cells expressing either the wildtype or mutant protein

were harvested at specific timepoints after cyclohexamide addition

and evaluated by western blotting (Figure 4A). Cyclohexamide

addition had little effect on the synthesis of either the wildtype or

D6-COOH protein as judged by the relative band C - band B ratio

at the zero hour timepoint. Wildtype band C protein levels

appeared unaltered across the 18-hour timecourse of cyclohex-

amide treatment as no significant decrease in band C was seen by

western blotting (Figure 4B).

In contrast, the D6-COOH protein showed increased protein

turnover during the cyclohexamide treatment timecourse. At the

zero timepoint, both band B and band C protein were observed

for the D6-COOH protein (Figure 4A). The band B protein did

not appear in subsequent timepoints, consistent with either its

maturation to the band C form or its degradation from the ER.

However, the band C D6-COOH protein showed increased

degradation across the 18-hour timecourse of cyclohexamide

treatment (Figure 4B). At eight hours, the D6-COOH protein

showed a ,20% decrease in band C, as compared to the zero

hour timepoint. At 18 hours, the quantity of band C D6-COOH

protein was reduced by greater than 80%, as compared to the zero

hour timepoint. The increase in protein turnover suggested that

increased rates of degradation of the D6-COOH protein

consensus is shown above the alignment as is represented as: A, acidic; P, polar, X, any; and H, hydrophobic amino acids. The PXE-associate G1501S
site is highlighted in red. C, representative western blots of the wildtype and D6-COOH ABCC6 proteins are shown after expression in HEK293 cells.
The core and complexly glycosylated species are indicated on the left by B and C, respectively. Two exposures are shown for the D6-COOH to
illustrate the formation of both band B and C at low levels in the mutant protein. D, endoglycosidase assays confirm the glycosylation state and
differential electrophoretic migration of the ABCC6 proteins. The differential digestion of the band C protein by EndoH and PNGaseF demonstrates
complex glycosylation, consistent with trafficking through the Golgi. The N15D substitution blocks N-linked glycosylation and is a reference for the
unglycosylated wildtype and D6-COOH proteins. E, representative western blots from cell surface biotinylation experiments are shown. Cell surface
expression is shown for cells mock transfected (CNTL) or transfected with wildtype or D6-COOH ABCC6, Cell Surface. Whole cell lysates are shown,
Total, from samples prior to streptavidin pull-down. The control samples are taken from non-adjacent wells on a single gel/film. F,
immunofluorescence images of the wildtype and D6-COOH proteins are shown. The ABCC6 proteins are shown in green, phalloidin is shown in
red, and DAPI is shown in blue. Colocalization of the ABCC6 protein with phalloidin is consistent with ABCC6 trafficking to the cell surface in the
wildtype protein and is decreased by the D6-COOH mutant. G, immunofluorescence images of the wildtype and D6-COOH ABCC6 proteins are shown
after expression in polarized MDCK cells. The wildtype ABCC6 protein localizes to the basolateral membrane in polarized MDCK cells, left. The D6-
COOH protein shows significant intracellular staining and a loss of basolateral targeting in MDCK cells, right. Both X–Y, top, and X–Z, bottom, images
are shown. For G, ABCC6 is stained in green and ZO1 is shown in red. Western blots are representative of samples from at least three independent
experiments.
doi:10.1371/journal.pone.0097360.g001
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contributed to the changes in expression seen by western blotting

and immunofluorescence under steady state conditions.

Plasma Membrane Turnover of ABCC6
To further evaluate changes ABCC6 dynamics, a biotin ligase

acceptor peptide (BLAP) was introduced into the N-terminus of

the ABCC6 proteins (Figure 1A). Previous studies have shown that

the BLAP tag is selectively modified by the BirA biotin ligase and

can be used to efficiently label proteins that include this specific

peptide sequence. [48,49] To accomplish labeling, the ABCC6-

BLAP proteins were co-expressed with BirA that has been fused

with an ER-localization (KDEL) sequence or labeled with purified

BirA at the cell surface. When both the ligase and tagged proteins

are co-expressed, the nascent polypeptide is biotinylated by the

BirA ligase during biosynthesis and ER membrane integration.

The cell surface biotinylated protein can then be labeled by

addition of membrane impermeant, fluorescently-conjugated

streptavidin.

Steady-state expression of the wildtype and D6-COOH BLAP

proteins was assessed by western blotting and immunofluores-

cence. As seen with the untagged ABCC6 proteins, the wildtype

protein trafficked with high efficiency through the secretory

pathway. Western blotting confirmed strong band C expression of

the BLAP tagged wildtype ABCC6 (Figure 5A). The D6-COOH

BLAP ABCC6 showed a dramatic reduction in total expression

compared to wildtype. In addition, the relative quantities of band

C and band B were altered in the D6-COOH mutant when

compared with wildtype. These changes were consistent with those

seen in the untagged ABCC6 proteins (Figure 1). Cell surface

detection of the protein after co-expression with KDEL-BirA,

visualized by extracellular application of an AlexaFluor conjugated

streptavidin, confirmed the cell surface expression of the wildtype

protein (Figure 5B). As with the biotinylation and immunofluo-

rescence of the untagged D6-COOH ABCC6 protein, the BLAP

tagged mutant showed reduced cell surface expression with fewer

cells and lower fluorescence signal evident for the mutant. These

results suggested the presence of the BLAP tag had no discernible

effect on the behavior of the wildtype and mutant ABCC6

proteins.

Using this system, we assessed the lifetime of the plasma

membrane resident BLAP-ABCC6 proteins using both fluores-

cence and western blotting of the ABCC6-biotin-streptavidin

complex, as previously described. [49] Pulse-chase cell surface

labeling of the wildtype and D6-COOH proteins was accom-

plished by sequential labeling using two AlexaFluor-conjugated

streptavidin proteins. Cells were labeled on ice with an Alexa-

Fluor-488 conjugated streptavidin and the excess streptavidin was

removed by washing with PBS. The initial labeling corresponded

to the cell surface ‘‘pulse,’’ selectively tagging the plasma

membrane resident ABCC6 protein. The cells were then

incubated for designated periods – the ‘‘chase’’ - at 37uC before

being labeled using an AlexaFluor-555 conjugated streptavidin,

washed and fixed for visualization. The second labeling facilitated

the identification of the cell surface and demonstrated continued

expression and trafficking of ABCC6 during the experimental

timecourse.

The wildtype ABCC6 protein showed robust cell-surface

labeling (Figure 5C) at the initial timepoint (0 hours) with the

AlexaFluor-488-conjugated streptavidin. The inability to detect

significant AlexaFluor-555 label at the zero timepoint suggested

that the vast majority of plasma membrane ABCC6 was bound by

the AlexaFluor-488-conjugated streptavidin. At four, eight and 18

hours after the AlexaFluor-488 ‘‘pulse,’’ the wildtype protein was

partially endocytosed, as evidenced by the internalization of the

AlexaFluor-488 label. This relocalization was confirmed by the

visualization of AlexaFluor-555 labeled ABCC6 at the cell surface.

By 18 hours the majority of plasma membrane ABCC6 initially

labeled at the zero time point appeared to have been internalized

and/or degraded. The loss of fluorescence after internalization

likely resulted from both dilution of the fluorophore from the

plasma membrane into multiple intracellular compartments and

degradation of the streptavidin conjugate.

In contrast, the D6-COOH protein showed increased internal-

ization and degradation relative to the wildtype protein

(Figure 5C). Cell surface labeling of the mutant protein was less

robust than the wildtype at the initial timepoint. Additionally, by 4

hours the majority of mutant ABCC6 protein had been

internalized and degraded, as evidenced by a loss of green

Figure 2. Structural characterization of wildtype and D6-COOH NBD2. To evaluate potential changes in ABCC6 NBD2 resulting from the C-
terminal deletion, NBD2 was expressed and purified for in vitro analysis. A, CD spectroscopy was used to evaluate changes in the secondary structure
of the mutant NBD2. Spectra were collected from 260 to 198 nm and corrected for buffer absorbance. The traces were smoothed using a window of
5 nm. The wildtype NBD2, black circles, shows a mixed a/b secondary structure qualitatively consistent with known structures of NBD proteins. The
D6-COOH mutant NBD2, open circles, shows no significant differences in CD spectra. B, analytical gel filtration was used to evaluate changes in
hydrodynamic radii of the wildtype and mutant NBD2 proteins. The wildtype protein eluted as a single symmetrical peak at ,12.2 mls, consistent
with a protein of ,25,000 Da MW. The mutant proteins eluted similarly, with a peak at 12.2 mls. No discernible differences in either CD or GFC could
be detected between the wildtype and mutant proteins.
doi:10.1371/journal.pone.0097360.g002
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fluorescence. By eight and 18 hours, the ABCC6 protein labeled at

the initial timepoint was undetectable. As with the wildtype

protein, D6-COOH ABCC6 streptavidin-conjugated AlexaFluor-

555 labeling after the ‘‘chase’’ period facilitated identification of

the cell surface and demonstrated continued expression and

trafficking of the ABCC6 protein.

To verify the turnover of these cell surface ABCC6 proteins

biochemically, western blots of the streptavidin-bound BLAP-

ABCC6 protein were evaluated. Previous studies have shown that

Figure 3. Rescue of ABCC6 trafficking by low temperature expression. Low temperature expression was used to further evaluate ABCC6
trafficking in HEK293 cells. A, western blots showing the expression of the wildtype and D6-COOH ABCC6 proteins at 37uC and 27uC. Expression of the
wildtype protein at 27uC results in an increase in relative quantities of the core glycosylated, band B protein. Expressing the mutant protein at low
temperature resulted in an increase in complexly glycosylated protein (band C), consistent with an increase in the formation or stabilization of this
protein. B, indirect immunofluorescence of ABCC6 confirming the trafficking of the wildtype and mutant proteins is shown. Consistent with the
western blotting, expression at low temperature results in redistribution of the mutant protein towards the plasma membrane. ABCC6 is shown in
green, phalloidin is shown in red and DAPI is shown in blue.
doi:10.1371/journal.pone.0097360.g003
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the streptavidin-biotin association is resistant to SDS, with the

biotin and streptavidin remaining complexed after SDS-PAGE

analysis. [49] The resulting size shift, associated with the ABCC6-

streptavidin complex, effectively separates the labeled and

unlabeled proteins when separated by PAGE. Thus, the cell

surface pool of ABCC6 can be analyzed independent of the

internal pools of protein. Cells were labeled with streptavidin and

incubated for up to eight hours. Cells were harvested at specific

timepoints and the lysates were subjected to SDS-PAGE and

western blotting (Figure 5D). The wildtype protein showed strong

expression at the initial timepoint and appeared to decay after

approximately 4 hours. At eight hours, the wildtype protein was

reduced, but still readily detectable. The mutant protein showed a

decrease in total expression and an increase in the rate of

degradation. By four hours, the mutant protein showed significant

reduction in signal and was undetectable at eight hours. The

intracellular protein PARP-1 (110 kDa) was used as a loading

control to facilitate simultaneous detection of the streptavidin-

ABCC6 complex and the control.

Mechanisms of ABCC6 Degradation
To further evaluate the mechanisms associated with the D6-

COOH turnover and determine where in the cell this turnover

occurs, lactacystin and leupeptin/pepstatin were used to probe

cellular degradation pathways. Lactacystin was utilized to block

the proteasome, which is the principle degradation machine

associated with ER-associated degradation (ERAD). Inhibition of

the proteasome by lactacystin treatment showed minimal effects

on the maturation of the wildtype protein, as evaluated by western

blotting (Figure 6A). Subtle changes in band C quantities were

seen after treatment with lactacystin. No significant accumulation

of band B protein was seen in cells expressing the wildtype protein,

consistent with its trafficking from the ER to the Golgi. In contrast,

the band B D6-COOH protein accumulated with lactacystin

treatment, consistent with a reduction in ERAD. No significant

changes in band C protein were seen with lactacystin treatment for

the D6-COOH protein. The accumulation of band B and lack of

band C formation suggested that inhibiting the proteasome did not

facilitate trafficking of the mutant protein to the Golgi and post-

Golgi compartments. Immunofluorescence confirmed the accu-

mulation of intracellular D6-COOH protein (Figure 6B).

To evaluate protein turnover from the cell surface, a

combination of leupeptin and pepstatin were utilized to block

lysosomal degradation. Treatment with leupeptin/pepstatin re-

sulted in an increase in band C protein for both the wildtype and

D6-COOH under steady state conditions (Figure 6C). In a dose-

dependent manner, increasing leupetin doses resulted in increasing

band C protein levels. Band B protein levels for the D6-COOH

protein appeared unaffected by these treatments, consistent with

its degradation by the proteasome seen in Figure 6A. The

increased accumulation of band C D6-COOH protein suggested

that a population of this protein trafficked out of the ER and into

post-Golgi compartments, where it was degraded in the lysosome.

Similarly, when evaluated by immunofluorescence, both wildtype

and D6-COOH showed increased intracellular accumulation

(Figure 6D). The accumulation of intracellular protein seen by

immunofluorescence was consistent with western blots of ABCC6

and demonstrated that the post-Golgi pool of ABCC6 was

degraded by the lysosome.

Discussion

The regulation of ABC transporter trafficking and activity is

complex, requiring multiple folding and assembly steps to form the

functional transporter. [50–52] In addition to the biosynthetic

processes, ABC transporter localization and stability are regulated

by multiple protein sequences. [24,38,53,54] Among these, PDZ

ligands have been shown to contribute to protein localization and

stability at the plasma membrane. [29,55–57] Given the apparent

similarity of the ABCC6 C-terminal sequence to other PDZ-

containing ABCC transporters and the presence of a disease-

associated mutation within this region, we chose to evaluate the

role of this sequence in the expression and regulation of ABCC6.

Previous studies have demonstrated that the C-terminal

sequences in other ABC transporters play critical roles in the

trafficking, localization and function of these proteins. [55–58]

Similarly, the deletion of the PDZ-like sequence in ABCC6

suggested that this region of the protein also contributed

significantly to the biosynthesis and trafficking of the protein.

Figure 4. Impact of the C-terminus on ABCC6 turnover. Protein turnover was evaluated by cyclohexamide chase experiments after expression
in HEK293 cells. A, western blots of the wildtype and D6-COOH proteins are shown after 0, 4, 8, and 18 hours of cyclohexamide treatment. The
wildtype protein shows minimal changes after 18 hours of cyclohexamide treatment, while the mutant is decreased by ,80% over this timecourse.
The loss of band B protein in the mutant is consistent with the inhibition of new ABCC6 synthesis over the timecourse of treatment resulting from
cyclohexamide treatment. B, summary data for cyclohexamide chase experiments are shown. Between 8 and 18 hours of cyclohexamide chase, the
D6-COOH mutant protein is diminished by ,80% relative to the wildtype protein. Data shown are mean +/2 standard deviation from n= 3
experiments.
doi:10.1371/journal.pone.0097360.g004
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Figure 5. Regulation of cell surface stability by the C-terminus. Cell surface stability was evaluated by selective biotinylation of the ABCC6
protein using the BirA ligase and acceptor peptide in the extracellular N-terminus (see Figure 1A). A, western blots of the wildtype and D6-COOH
ABCC6 protein with the BLAP tag are shown. The inclusion of the BLAP tag in the N-terminus had no detectable effect on the trafficking of the
wildtype or mutant ABCC6 proteins evaluated by western blotting. B, fluorophore-conjugated streptavidin was applied to the culture media and cell
surface expression of the BLAP ABCC6 protein was evaluated by fluorescence microscopy. Consistent with western blotting, no detectable differences
were seen between the BLAP tagged and untagged ABCC6 proteins. The wildtype protein expressed robustly in HEK 293 cells, while the mutant
protein was only labeled in a small fraction of cells transfected. C, fluorescence analysis of the timecourse of ABCC6 internalization and degradation
from the cell surface is shown. The BLAP tagged proteins were sequentially labeled with fluorophore-conjugated streptavidin. Initial staining, time
zero, was performed using AlexaFluor-488, green, and secondary labeling was performed using AlexaFluor-555, red. The internalization and
degradation of ABCC6 could be seen over the course of 4–18 hours as the loss of green signal. D, western blots of cell surface labeled ABCC6 are
shown. Streptavidin was incubated extracellularly on intact HEK293 and the BLAP-tagged ABCC6 protein was bound and washed. The lystes were
subjected to SDS-PAGE and western blotting. The conjugated ABCC6-streptavidin complex could be distinguished readily from the total ABCC6
protein, allowing for the evaluation of plasma-membrane ABCC6 protein. Proteins were labeled, washed and incubated for zero to eight hours before
lysis. Negative controls included expression of the BLAP-ABCC6 protein without streptavidin treatment (C1) and mock-transfected HEK293 cells
treated with BirA and streptavidin (C2). Both negative controls showed no staining, consistent with specific detection of labeled BLAP-tagged ABCC6
in the experimental samples.
doi:10.1371/journal.pone.0097360.g005
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Figure 6. Impact of the C-terminus on ABCC6 degradation. ABCC6 degradation was evaluated after treatment with a proteasome inhibitor
(lactacystin) or a combination of lysosomal protease inhibitors, (leupeptin and pepstatin) and assessed by western blotting. A,B, inhibition of the
proteasome by lactacystin results in an accumulation of the ER-resident, band B protein in the mutant ABCC6. A, increasing lactacystin concentrations
from 0–10 mM, results in an accumulation of the band B form of the mutant ABCC6 protein as seen by western blotting. No increase in the formation
of the band C, complexly glycosylated protein is seen for either wildtype or mutant ABCC6 with lactacystin treatment. B, immunofluorescence of the
ABCC6 proteins reveals the wildtype and mutant accumulate after proteasome inhibition, but the mutant fails to redistribute to the cell surface.
ABCC6 is shown in green, phalloidin is shown in red and DAPI is shown in blue. C,D, lysosomal inhibition results in an increase in the complexly
glycosylated, band C protein for both wildtype and mutant ABCC6. C, a dose response of leupeptin/pepstatin treatment is shown from 0–100 mM
leupeptin treatment in the presence of 1 mg/ml pepstatin. Increasing pepstatin concentrations resulted in an increase in the band C ABCC6 protein.
D, immunofluorescence of HEK293 cells treated with leupeptin/pepstatin is shown. Treatment with leupeptin/pepstatin resulted in an increase in the
quantities of ABCC6 intracellularly. ABCC6 is shown in green, phalloidin is shown in red and DAPI is shown in blue.
doi:10.1371/journal.pone.0097360.g006
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Removal of the C-terminal six amino acids, predicted to contain

the residues required for a PDZ-domain interaction, resulted in

decreased steady state protein levels and changes in protein

localization in both polarized and non-polarized cells (Figure 1).

These changes appeared to decrease total protein expression

resulting from an increase in protein degradation (Figure 4, 5).

The changes in degradation were likely the result of increased

protein turnover in the ER and at the plasma membrane, as the

core glycosylated protein and the complexly glycosylated protein

were reduced by the C-terminal truncation. Both forms could be

alternately stabilized by protease inhibition. The ER associated

form was most strongly stabilized by inhibition of the proteasome

while the post-ER pool of protein was most strongly stabilized by

inhibition of the lysosome (Figure 5). These changes in protein

degradation did not appear to be caused by gross changes in the

local structure of the NBD, as purification of the wildtype and

mutant NBD2 were similar. The local structural properties

assessed spectrophotometrically and hydrodynamically were also

similar for both NBDs (Figure 2). Additional work is required to

assess the possibility that global changes might be propagated into

the ABCC6 structure through altered domain-domain contacts.

However, these data are consistent with previous reports of

regulated ABC transporter trafficking by PDZ associations in the

secretory pathway. [54,59].

Previous studies have shown that PDZ sequences contribute to

the regulated trafficking of other proteins, including ABC

transporters, though the exact roles of these sequences vary by

protein. In CFTR (ABCC7) the PDZ sequences regulate protein

localization and stability in the plasma membrane, with little

influence on the biosynthetic processing or trafficking of the

protein. [27,38] In contrast, removal of the PDZ sequence from

ABCC2 (cMOAT, MRP2) can alter either localization to the

apical membrane or changes in protein trafficking through the

biosynthetic pathway. [57,58] Further, these processes may be

regulated by phosphorylation of residues within the PDZ

sequence, providing a cellular mechanism to dynamically regulate

these associations. [23] Similar effects on trafficking and localiza-

tion have been reported for NMDA receptors, K+-channels, and

aquaporin channels, among others. [20,55,56] These results are

consistent with models wherein PDZ ligands are critical regulators

of intracellular protein-protein interactions along the secretory and

endocytic pathways as well as protein localization anchors at the

plasma membrane. [24].

Whether this sequence serves as a bona fide PDZ sequence that

binds a PDZ-domain containing protein or serves as a target for

other cellular proteins/processes is yet to be elucidated and

deserves further investigation. However, a single PXE patient in

which the G1501S mutation was found was reported to show

phenotypic abnormalities in the eye (bleeding/scarring) and mild

presentation in the skin (papules/bumps), but presented without

apparent GI, vascular or cardiac symptoms. [37] It is possible that

tissue specific changes in protein localization or protein-protein

association may contribute to the phenotype associated with this

specific mutation. Recent works suggests that functional ABCC6 at

the plasma membrane is coupled to the secretion of nucleotides

and the production of extracellular pyrophosphate. However,

nucleotide secretion is not mediated directly by ABCC6,

suggesting that plasma membrane ABCC6 function may be

coupled physically or functionally to the activities of other

transmembrane proteins. [60] This indirect regulation of secretory

activities could be accomplished by specific protein-protein

interactions mediated by the ABCC6 PDZ-like sequence at the

plasma membrane.

Taken together, our data suggest that the C-terminal PDZ-like

sequence is critical for the regulated trafficking and membrane

localization of ABCC6. Though this sequence varies from the

canonical PDZ-sequences found in other ABCC transporters, its

removal results in decreased protein expression and increased

degradation. These data provide evidence that the C-terminal

sequences in ABCC6 serve to regulate its biosynthetic processing

and membrane stability, thereby providing novel insight for the

regulation of ABCC6 in normal physiology and mechanisms for its

disruption in disease pathophysiology.
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