67 research outputs found

    Effects of Reproductive Status, Social Rank, Sex and Group Size on Vigilance Patterns in Przewalski's Gazelle

    Get PDF
    Quantifying vigilance and exploring the underlying mechanisms has been the subject of numerous studies. Less attention has focused on the complex interplay between contributing factors such as reproductive status, social rank, sex and group size. Reproductive status and social rank are of particular interest due to their association with mating behavior. Mating activities in rutting season may interfere with typical patterns of vigilance and possibly interact with social rank. In addition, balancing the tradeoff between vigilance and life maintenance may represent a challenge for gregarious ungulate species rutting under harsh winter conditions. We studied vigilance patterns in the endangered Przewalski's gazelle (Procapra przewalskii) during both the rutting and non-rutting seasons to examine these issues.Field observations were carried out with focal sampling during rutting and non-rutting season in 2008-2009. Results indicated a complex interplay between reproductive status, social rank, sex and group size in determining vigilance in this species. Vigilance decreased with group size in female but not in male gazelles. Males scanned more frequently and thus spent more time vigilant than females. Compared to non-rutting season, gazelles increased time spent scanning at the expense of bedding in rutting season. During the rutting season, territorial males spent a large proportion of time on rutting activities and were less vigilant than non-territorial males. Although territorial males may share collective risk detection with harem females, we suggest that they are probably more vulnerable to predation because they seemed reluctant to leave rut stands under threats.Vigilance behavior in Przewalski's gazelle was significantly affected by reproductive status, social rank, sex, group size and their complex interactions. These findings shed light on the mechanisms underlying vigilance patterns and the tradeoff between vigilance and other crucial activities

    It Costs to Be Clean and Fit: Energetics of Comfort Behavior in Breeding-Fasting Penguins

    Get PDF
    ), seabirds known to fast for up to one month during incubation shifts ashore.A time budget was estimated from focal and scan sampling field observations and the energy cost of comfort activities was calculated from the associated increase in heart rate (HR) during comfort episodes, using previously determined equations relating HR to energy expenditure. We show that incubating birds spent 22% of their daily time budget in comfort behavior (with no differences between day and night) mainly devoted to preening (73%) and head/body shaking (16%). During comfort behavior, energy expenditure averaged 1.24 times resting metabolic rate (RMR) and the corresponding energy cost (i.e., energy expended in excess to RMR) was 58 kJ/hr. Energy expenditure varied greatly among various types of comfort behavior, ranging from 1.03 (yawning) to 1.78 (stretching) times RMR. Comfort behavior contributed 8.8–9.3% to total daily energy expenditure and 69.4–73.5% to energy expended daily for activity. About half of this energy was expended caring for plumage.This study is the first to estimate the contribution of comfort behavior to overall energy budget in a free-living animal. It shows that although breeding on a tight energy budget, king penguins devote a substantial amount of time and energy to comfort behavior. Such findings underline the importance of comfort behavior for the fitness of colonial seabirds

    Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?

    Get PDF
    Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective harvesting and trophy hunting on long-term stability of exploited populations. Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist. Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species

    Approximating Optimal Behavioural Strategies Down to Rules-of-Thumb: Energy Reserve Changes in Pairs of Social Foragers

    Get PDF
    Functional explanations of behaviour often propose optimal strategies for organisms to follow. These ‘best’ strategies could be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple heuristics or ‘rules-of-thumb’ that approximate these optimal strategies may instead be performed. From a modelling perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two members of a foraging pair, who instead followed a rule-of-thumb approximation of the game's output. The original game generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes unpredictable. There was some agreement between both modelling techniques, but some differences arose – particularly when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-based models of group behaviour

    Mating First, Mating More: Biological Market Fluctuation in a Wild Prosimian

    Get PDF
    In biology, economics, and politics, distributive power is the key for understanding asymmetrical relationships and it can be obtained by force (dominance) or trading (leverage). Whenever males cannot use force, they largely depend on females for breeding opportunities and the balance of power tilts in favour of females. Thus, males are expected not only to compete within their sex-class but also to exchange services with the opposite sex. Does this mating market, described for humans and apes, apply also to prosimians, the most ancestral primate group? To answer the question, we studied a scent-oriented and gregarious lemur, Propithecus verreauxi (sifaka), showing female dominance, promiscuous mating, and seasonal breeding. We collected 57 copulations involving 8 males and 4 females in the wild (Berenty Reserve, South Madagascar), and data (all occurrences) on grooming, aggressions, and marking behaviour. We performed the analyses via exact Spearman and matrix correlations. Male mating priority rank correlated with the frequency of male countermarking over female scents but not with the proportion of fights won by males over females. Thus, males competed in an olfactory tournament more than in an arena of aggressive encounters. The copulation frequency correlated neither with the proportion of fights won by males nor with the frequency of male countermarking on female scents. Male-to-female grooming correlated with female-to-male grooming only during premating. Instead, in the mating period male-to-female grooming correlated with the copulation frequency. In short, the biological market underwent seasonal fluctuations, since males bargained grooming for sex in the mating days and grooming for itself in the premating period. Top scent-releasers gained mating priority (they mated first) and top groomers ensured a higher number of renewed copulations (they mated more). In conclusion, males maximize their reproduction probability by adopting a double tactic and by following market fluctuations

    Vigilance in a Cooperatively Breeding Primate

    Get PDF
    Collective vigilance is considered a major advantage of group living in animals. We investigated vigilance behavior in wild mustached tamarins (Saguinus mystax), small, arboreal, cooperatively breeding New World primates that form stable mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We aimed 1) to investigate whether vigilance patterns change according to individual activity and 2) to examine whether there is a social component of vigilance in their cooperative and nonaggressive society. We studied 11 factors that may influence vigilance and used this data to interpret the possible functions of vigilance. We observed 44 individuals in 3 mixed-species and 2 single-species groups of 2 populations that differed in population density and home range sizes. Vigilance changed greatly when individuals were engaged in different activities and individual vigilance was affected by different sets of factors depending on the activity. As vigilance decreased in proximity of conspecifics and heterospecifics when feeding, and in larger mixed-species groups when resting, we conclude that the predominant function of vigilance in mustached tamarins is predator related. However, the absence of the group size effect in very large single-species groups suggests that it may also function to maintain group cohesion. In the population with higher density and smaller home ranges individuals also increased their vigilance in home range overlap areas. We found no evidence that mustached tamarins monitor group mates to avoid food stealing or aggression. The effect of heterospecifics on individual vigilance suggests that collective vigilance might have been an important incentive in the evolution of tamarin mixed-species groups

    Defensive responses by a social caterpillar are tailored to different predators and change with larval instar and group size

    Get PDF
    Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey’s defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, and whether it is through dilution or cooperative defenses. We also examined the effects of larval growth and group size on the rate and success of attacks. Caterpillars of M. disstria responded with predator-specific behaviors, which led to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was most efficient against spider attacks. Collective head flicking and biting by groups of both second and fourth instar caterpillars were observed when attacked by parasitoids. Increased larval size decreased the average number of attacks by spiders but increased the number of attacks by both stinkbugs and parasitoids. However, increased body size decreased the success rate of attacks by all three natural enemies and increased handling time for both predators. Larger group sizes did not influence the number of attacks from predators but increased the number of attacks and the number of successful attacks from parasitoids. In all cases, individual risk was lower in larger groups. Caterpillars showed collective defenses against parasitoids but not against the walking predators. These results show that caterpillars use different tactics against different natural enemies. Overall, these tactics are both more diverse and more effective in fourth instar than in second instar caterpillars, confirming that growth reduces predation risk. We also show that grouping benefits caterpillars through dilution of risk, and, in the case of parasitoids, through group defenses. The decreased tendency to aggregate in the last larval instar may therefore be linked to decreasing predation risk

    Problems of multi-species organisms: endosymbionts to holobionts

    Get PDF
    The organism is one of the fundamental concepts of biology and has been at the center of many discussions about biological individuality, yet what exactly it is can be confusing. The definition that we find generally useful is that an organism is a unit in which all the subunits have evolved to be highly cooperative, with very little conflict. We focus on how often organisms evolve from two or more formerly independent organisms. Two canonical transitions of this type—replicators clustered in cells and endosymbiotic organelles within host cells—demonstrate the reality of this kind of evolutionary transition and suggest conditions that can favor it. These conditions include co-transmission of the partners across generations and rules that strongly regulate and limit conflict, such as a fair meiosis. Recently, much attention has been given to associations of animals with microbes involved in their nutrition. These range from tight endosymbiotic associations like those between aphids and Buchnera bacteria, to the complex communities in animal intestines. Here, starting with a reflection about identity through time (which we call “Theseus’s fish”), we consider the distinctions between these kinds of animal–bacteria interactions and describe the criteria by which a few can be considered jointly organismal but most cannot
    corecore