186 research outputs found
Entanglement generation outside a Schwarzschild black hole and the Hawking effect
We examine the Hawking effect by studying the asymptotic entanglement of two
mutually independent two-level atoms placed at a fixed radial distance outside
a Schwarzschild black hole in the framework of open quantum systems. We treat
the two-atom system as an open quantum system in a bath of fluctuating
quantized massless scalar fields in vacuum and calculate the concurrence, a
measurement of entanglement, of the equilibrium state of the system at large
times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find,
for all three vacuum cases, that the atoms turn out to be entangled even if
they are initially in a separable state as long as the system is not placed
right at the even horizon. Remarkably, only in the Unruh vacuum, will the
asymptotic entanglement be affected by the backscattering of the thermal
radiation off the space-time curvature. The effect of the back scatterings on
the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte
Familial aggregation of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia with solid tumors and myeloid malignancies.
To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.Lymphoplasmacytic lymphoma (LPL)/Waldenström macroglobulinemia (WM) is a B-cell disorder resulting from the accumulation, predominantly in the bone marrow, of clonally related lymphoplasmacytic cells. LPL/WM is a very rare disease, with an incidence rate of 3-4 cases per million people per year.Currently, the causes of LPL/WM are poorly understood; however, there are emerging data to support a role for immune-related factors in the pathogenesis of LPL/WM. In addition, data show that genetic factors are of importance in the etiology of LPL/WM. In this paper, we will review the current knowledge about familiality of LPL/WM and provide novel data on solid tumors and myeloid malignancies in first-degree relatives of LPL/WM patients.Swedish Cancer Society
Stockholm County Council
Karolinska Institutet Foundations
National Institutes of Health, National Cancer Institute
Roch
Rotation Curves of Spiral Galaxies
Rotation curves of spiral galaxies are the major tool for determining the
distribution of mass in spiral galaxies. They provide fundamental information
for understanding the dynamics, evolution and formation of spiral galaxies. We
describe various methods to derive rotation curves, and review the results
obtained. We discuss the basic characteristics of observed rotation curves in
relation to various galaxy properties, such as Hubble type, structure,
activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137,
200
The sudden change phenomenon of quantum discord
Even if the parameters determining a system's state are varied smoothly, the
behavior of quantum correlations alike to quantum discord, and of its classical
counterparts, can be very peculiar, with the appearance of non-analyticities in
its rate of change. Here we review this sudden change phenomenon (SCP)
discussing some important points related to it: Its uncovering,
interpretations, and experimental verifications, its use in the context of the
emergence of the pointer basis in a quantum measurement process, its appearance
and universality under Markovian and non-Markovian dynamics, its theoretical
and experimental investigation in some other physical scenarios, and the
related phenomenon of double sudden change of trace distance discord. Several
open questions are identified, and we envisage that in answering them we will
gain significant further insight about the relation between the SCP and the
symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F.
F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp
309-33
Theorems on existence and global dynamics for the Einstein equations
This article is a guide to theorems on existence and global dynamics of
solutions of the Einstein equations. It draws attention to open questions in
the field. The local-in-time Cauchy problem, which is relatively well
understood, is surveyed. Global results for solutions with various types of
symmetry are discussed. A selection of results from Newtonian theory and
special relativity that offer useful comparisons is presented. Treatments of
global results in the case of small data and results on constructing spacetimes
with prescribed singularity structure or late-time asymptotics are given. A
conjectural picture of the asymptotic behaviour of general cosmological
solutions of the Einstein equations is built up. Some miscellaneous topics
connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living
Rev. Rel. 5 (2002)
Assignment of chromosomal locations for unassigned SNPs/scaffolds based on pair-wise linkage disequilibrium estimates
<p>Abstract</p> <p>Background</p> <p>Recent developments of high-density SNP chips across a number of species require accurate genetic maps. Despite rapid advances in genome sequence assembly and availability of a number of tools for creating genetic maps, the exact genome location for a number of SNPs from these SNP chips still remains unknown. We have developed a locus ordering procedure based on linkage disequilibrium (LODE) which provides estimation of the chromosomal positions of unaligned SNPs and scaffolds. It also provides an alternative means for verification of genetic maps. We exemplified LODE in cattle.</p> <p>Results</p> <p>The utility of the LODE procedure was demonstrated using data from 1,943 bulls genotyped for 73,569 SNPs across three different SNP chips. First, the utility of the procedure was tested by analysing the masked positions of 1,500 randomly-chosen SNPs with known locations (50 from each chromosome), representing three classes of minor allele frequencies (MAF), namely >0.05, 0.01<MAF ≤ 0.05 and 0.001<MAF ≤ 0.01. The efficiency (percentage of masked SNPs that could be assigned a location) was 96.7%, 30.6% and 2.0%; with an accuracy (the percentage of SNPs assigned correctly) of 99.9%, 98.9% and 33.3% in the three classes of MAF, respectively. The average precision for placement of the SNPs was 914, 3,137 and 6,853 kb, respectively. Secondly, 4,688 of 5,314 SNPs unpositioned in the Btau4.0 assembly were positioned using the LODE procedure. Based on these results, the positions of 485 unordered scaffolds were determined. The procedure was also used to validate the genome positions of 53,068 SNPs placed on Btau4.0 bovine assembly, resulting in identification of problem areas in the assembly. Finally, the accuracy of the LODE procedure was independently validated by comparative mapping on the hg18 human assembly.</p> <p>Conclusion</p> <p>The LODE procedure described in this study is an efficient and accurate method for positioning SNPs (MAF>0.05), for validating and checking the quality of a genome assembly, and offers a means for positioning of unordered scaffolds containing SNPs. The LODE procedure will be helpful in refining genome sequence assemblies, especially those being created from next-generation sequencing where high-throughput SNP discovery and genotyping platforms are integrated components of genome analysis.</p
Unraveling the mysteries of dog evolution
The increased battery of molecular markers, derived from comparative genomics, is aiding our understanding of the genetics of domestication. The recent BMC Biology article pertaining to the evolution of small size in dogs is an example of how such methods can be used to study the origin and diversification of the domestic dog. We are still challenged, however, to appreciate the genetic mechanisms responsible for the phenotypic diversity seen in 'our best friend'
Renal Failure Affects the Enzymatic Activities of the Three First Steps in Hepatic Heme Biosynthesis in the Acute Intermittent Porphyria Mouse
Chronic kidney disease is a long-term complication in acute intermittent porphyria (AIP). The pathophysiological significance of hepatic overproduction of the porphyrin precursors aminolevulinate acid (ALA) and porphobilinogen (PBG) in chronic kidney disease is unclear. We have investigated the effect of repetitive acute attacks on renal function and the effect of total or five-sixth nephrectomy causing renal insufficiency on hepatic heme synthesis in the porphobilinogen deaminase (PBGD)-deficient (AIP) mouse. Phenobarbital challenge in the AIP-mice increased urinary porphyrin precursor excretion. Successive attacks throughout 14 weeks led to minor renal lesions with no impact on renal function. In the liver of wild type and AIP mice, 5/6 nephrectomy enhanced transcription of the first and rate-limiting ALA synthase. As a consequence, urinary PBG excretion increased in AIP mice. The PBG/ALA ratio increased from 1 in sham operated AIP animals to over 5 (males) and over 13 (females) in the 5/6 nephrectomized mice. Total nephrectomy caused a rapid decrease in PBGD activity without changes in enzyme protein level in the AIP mice but not in the wild type animals. In conclusion, high concentration of porphyrin precursors had little impact on renal function. However, progressive renal insufficiency aggravates porphyria attacks and increases the PBG/ALA ratio, which should be considered a warning sign for potentially life-threatening impairment in AIP patients with signs of renal failure
Nucleotide diversity and molecular evolution of the WAG-2 gene in common wheat (Triticum aestivum L) and its relatives
In this work, we examined the genetic diversity and evolution of the WAG-2 gene based on new WAG-2 alleles isolated from wheat and its relatives. Only single nucleotide polymorphisms (SNP) and no insertions and deletions (indels) were found in exon sequences of WAG-2 from different species. More SNPs and indels occurred in introns than in exons. For exons, exons+introns and introns, the nucleotide polymorphism π decreased from diploid and tetraploid genotypes to hexaploid genotypes. This finding indicated that the diversity of WAG-2 in diploids was greater than in hexaploids because of the strong selection pressure on the latter. All dn/ds ratios were < 1.0, indicating that WAG-2 belongs to a conserved gene affected by negative selection. Thirty-nine of the 57 particular SNPs and eight of the 10 indels were detected in diploid species. The degree of divergence in intron length among WAG-2 clones and phylogenetic tree topology suggested the existence of three homoeologs in the A, B or D genome of common wheat. Wheat AG-like genes were divided into WAG-1 and WAG-2 clades. The latter clade contained WAG-2, OsMADS3 and ZMM2 genes, indicating functional homoeology among them
The Evolution of Mammalian Gene Families
Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic “revolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives
- …
