53 research outputs found

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    A Delphi study and ranking exercise to support commissioning services:Future delivery of Thrombectomy services in England

    Get PDF
    Background: Intra-arterial thrombectomy is the gold standard treatment for large artery occlusive stroke. However, the evidence of its benefits is almost entirely based on trials delivered by experienced neurointerventionists working in established teams in neuroscience centres. Those responsible for the design and prospective reconfiguration of services need access to a comprehensive and complementary array of information on which to base their decisions. This will help to ensure the demonstrated effects from trials may be realised in practice and account for regional/local variations in resources and skill-sets. One approach to elucidate the implementation preferences and considerations of key experts is a Delphi survey. In order to support commissioning decisions, we aimed to using an electronic Delphi survey to establish consensus on the options for future organisation of thrombectomy services among physicians with clinical experience in managing large artery occlusive stroke. Methods: A Delphi survey was developed with 12 options for future organisation of thrombectomy services in England. A purposive sampling strategy established an expert panel of stroke physicians from the British Association of Stroke Physicians (BASP) Clinical Standards and/or Executive Membership that deliver 24/7 intravenous thrombolysis. Options with aggregate scores falling within the lowest quartile were removed from the subsequent Delphi round. Options reaching consensus following the two Delphi rounds were then ranked in a final exercise by both the wider BASP membership and the British Society of Neuroradiologists (BSNR). Results: Eleven stroke physicians from BASP completed the initial two Delphi rounds. Three options achieved consensus, with subsequently wider BASP (97%, n=43) and BSNR members (86%, n=21) assigning the highest approval rankings in the final exercise for transferring large artery occlusive stroke patients to nearest neuroscience centre for thrombectomy based on local CT/CT Angiography. Conclusions: The initial Delphi rounds ensured optimal reduction of options by an expert panel of stroke physicians, while subsequent ranking exercises allowed remaining options to be ranked by a wider group of experts within stroke to reach consensus. The preferred implementation option for thrombectomy is conveying suspected stroke patients for CT/CT Angiography and secondary transfer of large artery occlusive stroke patients to the nearest neuroscience centre

    Targeting cancer metabolism: a therapeutic window opens

    Get PDF
    Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.

    Biomarkers for nutrient intake with focus on alternative sampling techniques

    Full text link
    corecore