625 research outputs found
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Recommended from our members
Atlantic overturning in decline?
Global ocean circulation is an important factor in climate variability and change. In particular, changes in the strength of the Atlantic meridional overturning circulation (AMOC) have been implicated in ancient climate events, as well as in recent climate anomalies such as the rapid warming of the North Atlantic Ocean in the mid-1990s. A series of moored current meters and temperature sensors deployed in the Atlantic at 26° N known as the RAPID-MOCHA array has been used to monitor the strength of meridional overturning since 2004. The data indicate a decline in this strength over the period 2004–20123. Here, using additional observations and climate model simulations we suggest that this measured decline is not merely a short-term fluctuation, but is part of a substantial reduction in meridional overturning occurring on a decadal timescale
Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors
The development of highly-sensitive and miniaturized sensors that capable of
real-time analytes detection is highly desirable. Nowadays, toxic or colorless
gas detection, air pollution monitoring, harmful chemical, pressure, strain,
humidity, and temperature sensors based on photonic crystal fiber (PCF) are
increasing rapidly due to its compact structure, fast response and efficient
light controlling capabilities. The propagating light through the PCF can be
controlled by varying the structural parameters and core-cladding materials, as
a result, evanescent field can be enhanced significantly which is the main
component of the PCF based gas/chemical sensors. The aim of this chapter is to
(1) describe the principle operation of PCF based gas/ chemical sensors, (2)
discuss the important PCF properties for optical sensors, (3) extensively
discuss the different types of microstructured optical fiber based gas/
chemical sensors, (4) study the effects of different core-cladding shapes, and
fiber background materials on sensing performance, and (5) highlight the main
challenges of PCF based gas/ chemical sensors and possible solutions
International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol
Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature.
There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed
Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)
BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators
The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state
We introduce and analyze a minimal model of epigenetic silencing in budding
yeast, built upon known biomolecular interactions in the system. Doing so, we
identify the epigenetic marks essential for the bistability of epigenetic
states. The model explicitly incorporates two key chromatin marks, namely H4K16
acetylation and H3K79 methylation, and explores whether the presence of
multiple marks lead to a qualitatively different systems behavior. We find that
having both modifications is important for the robustness of epigenetic
silencing. Besides the silenced and transcriptionally active fate of chromatin,
our model leads to a novel state with bivalent (i.e., both active and
silencing) marks under certain perturbations (knock-out mutations, inhibition
or enhancement of enzymatic activity). The bivalent state appears under several
perturbations and is shown to result in patchy silencing. We also show that the
titration effect, owing to a limited supply of silencing proteins, can result
in counter-intuitive responses. The design principles of the silencing system
is systematically investigated and disparate experimental observations are
assessed within a single theoretical framework. Specifically, we discuss the
behavior of Sir protein recruitment, spreading and stability of silenced
regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the
controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page
In Bonobos Yawn Contagion Is Higher among Kin and Friends
In humans, the distribution of yawn contagion is shaped by social closeness with strongly bonded pairs showing higher levels of contagion than weakly bonded pairs. This ethological finding led the authors to hypothesize that the phenomenon of yawn contagion may be the result of certain empathic abilities, although in their most basal form. Here, for the first time, we show the capacity of bonobos (Pan paniscus) to respond to yawns of conspecifics. Bonobos spontaneously yawned more frequently during resting/relaxing compared to social tension periods. The results show that yawn contagion was context independent suggesting that the probability of yawning after observing others\u27 yawns is not affected by the propensity to engage in spontaneous yawns. As it occurs in humans, in bonobos the yawing response mostly occurred within the first minute after the perception of the stimulus. Finally, via a Linear Mixed Model we tested the effect of different variables (e.g., sex, rank, relationship quality) on yawn contagion, which increased when subjects were strongly bonded and when the triggering subject was a female. The importance of social bonding in shaping yawn contagion in bonobos, as it occurs in humans, is consistent with the hypothesis that empathy may play a role in the modulation of this phenomenon in both species. The higher frequency of yawn contagion in presence of a female as a triggering subject supports the hypothesis that adult females not only represent the relational and decisional nucleus of the bonobo society, but also that they play a key role in affecting the emotional states of others
Attachment, infidelity, and loneliness in college students involved in a romantic relationship: the role of relationship satisfaction, morbidity and prayer for partner
This study examined the mediating effects of relationship satisfaction, prayer
for a partner, and morbidity in the relationship between attachment and loneliness, infidelity
and loneliness, and psychological morbidity and loneliness, in college students
involved in a romantic relationship. Participants were students in an introductory course on
family development. This study examined only students (n = 345) who were involved in a
romantic relationship. The average age of participants was 19.46 (SD = 1.92) and 25 %
were males. Short-form UCLA Loneliness Scale (ULS-8), (Hays and DiMatteo in J Pers
Assess 51:69–81, doi:10.1207/s15327752jpa5101_6, 1987); Relationship Satisfaction
Scale (Funk and Rogge in J Fam Psychol 21:572–583, doi:10.1037/0893-3200.21.4.572,
2007); Rotterdam Symptom Checklist (De Haes et al. in Measuring the quality of life of
cancer patients with the Rotterdam Symptom Checklist (RSCL): a manual, Northern
Centre for Healthcare Research, Groningen, 1996); Prayer for Partner Scale, (Fincham
et al. in J Pers Soc Psychol 99:649–659, doi:10.1037/a0019628, 2010); Infidelity Scale,
(Drigotas et al. in J Pers Soc Psychol 77:509–524, doi:10.1037/0022-3514.77.3.509, 1999);
and the Experiences in Close Relationship Scale-short form (Wei et al. in J Couns Psychol
52(4):602–614, doi:10.1037/0022-0167.52.4.602, 2005). Results showed that relationship
satisfaction mediated the relationship between avoidance attachment and loneliness and
between infidelity and loneliness. Physical morbidity mediated the relationship between
anxious attachment and psychological morbidity. Psychological morbidity mediated the
relationship between anxious attachment and physical morbidity. The present results
expand the literature on attachment by presenting evidence that anxious and avoidant partners experience loneliness differently. Implications for couple’s therapy are addressed.
Future research should replicate these results with older samples and married couples.Acknowledgments This research was supported by Grant Number 90FE0022 from the United States
Department of Health and Human Services awarded to the last author
A framework for the first‑person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila
Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception
Balancing repair and tolerance of DNA damage caused by alkylating agents
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
- …
