1,445 research outputs found

    The Organic Research Centre; Elm Farm Bulletin 84 July 2006

    Get PDF
    Regular bulletin with technical updates of the Organic Advisory Service Issue contains: Battling on for Avian Flu preventive vaccination; Organic Colombian Blacktail eggs; UK Co-existence - GMOand non-GMO crops; Aspects of Poultry Behaviour; CAP in the service of biodiversity; Seeing the Wood, the Trees and the Catch 22; Beware of organic market "statistics"; A central role in energy review

    Preparing Underrepresented High School Students to Increase Diversity in the Research and Health Professions

    Full text link
    This article introduces the work that was done through the Coordinating Center at Charles R. Drew University of Medicine and Science

    Impacts of climate variability and future climate change on harmful algal blooms and human health

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.This work was funded in part through grants from the NSF/NIEHS Centers for Oceans and Human Health, grant numbers NSF OCE04-32479 and NIEHS P50 ES012740 (EAL), NSF OCE-0432368 and NIEHS P50 ES012736 (LEF), NIEHS P50 ES012762 and NSF OCE-0434087 (SKM, MSP). SKM, VLT and NJM also were supported in part by the West Coast Center for Oceans and Human Health (WCCOHH) as part of the NOAA Oceans and Human Health Initiative, and this is WCCOHH publication no. 26. The WCCOHH is part of the National Marine Fisheries Service's Northwest Fisheries Science Center, Seattle, Washington

    Training Underrepresented High School Students as a Strategy to Increase Diversity in the Biomedical Research and Health Professions Workforce

    Full text link
    This manuscript introduces the abstracts from the University of California, Los Angeles Coordinating Center

    Subsideband generation and modulational instability lasing in a fiber soliton laser

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow

    Get PDF
    In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments

    Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes

    Get PDF
    The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)

    The plasma membrane carbonic anhydrase in murine hepatocytes identified as isozyme XIV

    Get PDF
    BACKGROUND: Biochemical and histochemical studies have both previously indicated plasma membrane-associated carbonic anhydrase (CA) activity in hepatocytes which has been assumed to be CA IV. However, immunohistochemical data did not support this assignment. Recent northern blotting results indicated the presence of mRNA for the most recently discovered membrane-bound CA isozyme, CA XIV, in the liver. The present study was designed to examine whether CA XIV could contribute to the CA activity described in the hepatocytes. METHODS: Tissue samples from mouse liver were subjected to immunohistochemical staining using the antibodies raised against recombinant mouse CA XIV and CA IV. RT-PCR and western blotting were also performed for CA XIV. RESULTS: A strong immunofluorescent signal was observed in the plasma membrane of mouse hepatocytes. Although CA XIV was expressed on both the apical and basolateral surfaces, the staining was more prominent at the apical (canalicular) membrane domain. The expression of CA XIV in the liver was confirmed by RT-PCR and western blotting. CONCLUSIONS: The presence of CA XIV in the hepatocyte plasma membrane places this novel enzyme at a strategic site to control pH regulation and ion transport between the hepatocytes, sinusoids and bile canaliculi

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
    corecore