In this paper we present a Semi-Lagrangian scheme for a regularized version
of the Hughes model for pedestrian flow. Hughes originally proposed a coupled
nonlinear PDE system describing the evolution of a large pedestrian group
trying to exit a domain as fast as possible. The original model corresponds to
a system of a conservation law for the pedestrian density and an Eikonal
equation to determine the weighted distance to the exit. We consider this model
in presence of small diffusion and discuss the numerical analysis of the
proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small
diffusion on the exit time with various numerical experiments