89 research outputs found

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    The TGF-β/Smad Repressor TG-Interacting Factor 1 (TGIF1) Plays a Role in Radiation-Induced Intestinal Injury Independently of a Smad Signaling Pathway

    Get PDF
    Despite advances in radiation delivery protocols, exposure of normal tissues during the course of radiation therapy remains a limiting factor of cancer treatment. If the canonical TGF-β/Smad pathway has been extensively studied and implicated in the development of radiation damage in various organs, the precise modalities of its activation following radiation exposure remain elusive. In the present study, we hypothesized that TGF-β1 signaling and target genes expression may depend on radiation-induced modifications in Smad transcriptional co-repressors/inhibitors expressions (TGIF1, SnoN, Ski and Smad7). In endothelial cells (HUVECs) and in a model of experimental radiation enteropathy in mice, radiation exposure increases expression of TGF-β/Smad pathway and of its target gene PAI-1, together with the overexpression of Smad co-repressor TGIF1. In mice, TGIF1 deficiency is not associated with changes in the expression of radiation-induced TGF-β pathway-related transcripts following localized small intestinal irradiation. In HUVECs, TGIF1 overexpression or silencing has no influence either on the radiation-induced Smad activation or the Smad3-dependent PAI-1 overexpression. However, TGIF1 genetic deficiency sensitizes mice to radiation-induced intestinal damage after total body or localized small intestinal radiation exposure, demonstrating that TGIF1 plays a role in radiation-induced intestinal injury. In conclusion, the TGF-β/Smad co-repressor TGIF1 plays a role in radiation-induced normal tissue damage by a Smad-independent mechanism

    Mining expressed sequence tags identifies cancer markers of clinical interest

    Get PDF
    BACKGROUND: Gene expression data are a rich source of information about the transcriptional dis-regulation of genes in cancer. Genes that display differential regulation in cancer are a subtype of cancer biomarkers. RESULTS: We present an approach to mine expressed sequence tags to discover cancer biomarkers. A false discovery rate analysis suggests that the approach generates less than 22% false discoveries when applied to combined human and mouse whole genome screens. With this approach, we identify the 200 genes most consistently differentially expressed in cancer (called HM200) and proceed to characterize these genes. When used for prediction in a variety of cancer classification tasks (in 24 independent cancer microarray datasets, 59 classifications total), we show that HM200 and the shorter gene list HM100 are very competitive cancer biomarker sets. Indeed, when compared to 13 published cancer marker gene lists, HM200 achieves the best or second best classification performance in 79% of the classifications considered. CONCLUSION: These results indicate the existence of at least one general cancer marker set whose predictive value spans several tumor types and classification types. Our comparison with other marker gene lists shows that HM200 markers are mostly novel cancer markers. We also identify the previously published Pomeroy-400 list as another general cancer marker set. Strikingly, Pomeroy-400 has 27 genes in common with HM200. Our data suggest that a core set of genes are responsive to the deregulation of pathways involved in tumorigenesis in a variety of tumor types and that these genes could serve as transcriptional cancer markers in applications of clinical interest. Finally, our study suggests new strategies to select and evaluate cancer biomarkers in microarray studies

    Health status improvement with ferric carboxymaltose in heart failure with reduced ejection fraction and iron deficiency.

    Get PDF
    AIM: Intravenous ferric carboxymaltose (FCM) has been shown to improve overall quality of life in iron-deficient heart failure with reduced ejection fraction (HFrEF) patients at a trial population level. This FAIR-HF and CONFIRM-HF pooled analysis explored the likelihood of individual improvement or deterioration in Kansas City Cardiomyopathy Questionnaire (KCCQ) domains with FCM versus placebo and evaluated the stability of this response over time. METHODS AND RESULTS: Changes versus baseline in KCCQ overall summary score (OSS), clinical summary score (CSS) and total symptom score (TSS) were assessed at weeks 12 and 24 in FCM and placebo groups. Mean between-group differences were estimated and individual responder analyses and analyses of response stability were performed. Overall, 760 (FCM, n = 454) patients were studied. At week 12, the mean improvement in KCCQ OSS was 10.6 points with FCM versus 4.8 points with placebo (least-square mean difference [95% confidence interval, CI] 4.36 [2.14; 6.59] points). A higher proportion of patients on FCM versus placebo experienced a KCCQ OSS improvement of ≥5 (58.3% vs. 43.5%; odds ratio [95% CI] 1.81 [1.30; 2.51]), ≥10 (42.4% vs. 29.3%; 1.73 [1.23; 2.43]) or ≥15 (32.1% vs. 22.6%; 1.46 [1.02; 2.11]) points. Differences were similar at week 24 and for CSS and TSS domains. Of FCM patients with a ≥5-, ≥10- or ≥15-point improvement in KCCQ OSS at week 12, >75% sustained this improvement at week 24. CONCLUSION: Treatment of iron-deficient HFrEF patients with intravenous FCM conveyed clinically relevant improvements in health status at an individual-patient level; benefits were sustained over time in most patients

    Responder analysis for improvement in 6-min walk test with ferric carboxymaltose in patients with heart failure with reduced ejection fraction and iron deficiency

    Get PDF
    Aim Improving functional capacity is a key goal in heart failure (HF). This pooled analysis of FAIR-HF and CONFIRM-HF assessed the likelihood of improvement or deterioration in 6-min walk test (6MWT) among iron-deficient patients with chronic HF with reduced ejection fraction (HFrEF) receiving ferric carboxymaltose (FCM). Methods and results Data for 760 patients (FCM: n = 454; placebo: n = 306) were analysed. The proportions of patients receiving FCM or placebo who had ≥20, ≥30, and ≥40 m improvements or ≥10 m deterioration in 6MWT at 12 and 24 weeks were assessed. Patients receiving FCM experienced a mean (standard deviation) 31.1 (62.3) m improvement in 6MWT versus 0.1 (77.1) m improvement for placebo at week 12 (difference in mean changes 26.8 [16.6;37.0]). At week 12, the odds [95% confidence interval] of 6MWT improvements of ≥20 m (odds ratio 2.16 [1.57–2.96]; p < 0.0001), ≥30 m (2.00 [1.44–2.78]; p < 0.0001), and ≥40 m (2.29 [1.60–3.27]; p < 0.0001) were greater with FCM versus placebo, while the odds of a deterioration ≥10 m were reduced with FCM versus placebo (0.55 [0.38–0.80]; p = 0.0019). Among patients who experienced 6MWT improvements of ≥20, ≥30, or ≥40 m with FCM at week 12, more than 80% sustained this improvement at week 24. Conclusion Ferric carboxymaltose resulted in a significantly higher likelihood of improvement and a reduced likelihood of deterioration in 6MWT versus placebo among iron-deficient patients with HF. Of the patients experiencing clinically significant improvements at week 12, the majority sustained this improvement at week 24. These results are supportive of FCM to improve exercise capacity in HF

    Molecular Mimicry by an F-Box Effector of Legionella pneumophila Hijacks a Conserved Polyubiquitination Machinery within Macrophages and Protozoa

    Get PDF
    The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts

    Zebrafish ProVEGF-C Expression, Proteolytic Processing and Inhibitory Effect of Unprocessed ProVEGF-C during Fin Regeneration

    Get PDF
    BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration

    Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    Get PDF
    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells' interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered

    8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis

    Get PDF
    BACKGROUND: Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer. METHODS AND FINDINGS: By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis. CONCLUSIONS: Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer
    corecore