151 research outputs found

    WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Get PDF
    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe

    Antimicrobial Activity and Genetic Profile of Enteroccoci Isolated from Hoopoes Uropygial Gland

    Get PDF
    Symbiotic microorganisms may be directly transferred from parents to offspring or acquired from a particular environment that animals may be able to select. If benefits for hosts vary among microbial strains, natural selection may favour hosts holding the most beneficial one. Enterococci symbionts living in the hoopoe (Upupa epops) uropygial gland are able to synthesise bacteriocins (antimicrobial peptides that inhibit the growth of competitor bacteria). We explored variability in genetic profile (through RAPD-PCR analyses) and antimicrobial properties (by performing antagonistic tests against ten bacterial indicator strains) of the different isolates obtained from the uropygial glands of hoopoe females and nestlings. We found that the genetic profile of bacterial isolates was related to antimicrobial activity, as well as to individual host identity and the nest from which samples were obtained. This association suggest that variation in the inhibitory capacity of Enterococci symbionts should be under selection.This work was financed by Ministerio de Ciencia e Innovación (Spanish National Government) and FEDER founds (projects CGL2010-19233-C03-01, and CGL2010-19233-C03-03), and Junta de Andalucía (P09-RNM-4557)

    ACL injuries identifiable for pre-participation imagiological analysis: Risk factors

    Get PDF
    Identification of pre-participation risk factors for noncontact anterior cruciate ligament (ACL) injuries has been attracting a great deal of interest in the sports medicine and traumatology communities. Appropriate methods that enable predicting which patients could benefit from pre- ventive strategies are most welcome. This would enable athlete-specific training and conditioning or tailored equipment in order to develop appropriate strategies to reduce incidence of injury. In order to accomplish these goals, the ideal system should be able to assess both anatomic and functional features. Complementarily, the screening method must be cost-effective and suited for widespread application. Anatomic study protocol requiring only standard X rays could answer some of such demands. Dynamic MRI/CT evaluation and electronically assisted pivot-shift evaluation can be powerful tools providing complementary information. These upcoming insights, when validated and properly combined, envision changing pre-participation knee examination in the near future. Herein different methods (validated or under research) aiming to improve the capacity to identify persons/athletes with higher risk for ACL injury are overviewed.

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses

    The effects of thermal capsulorrhaphy of medial parapatellar capsule on patellar lateral displacement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effectiveness of thermal shrinkage on the medial parapatellar capsule for treating recurrent patellar dislocation is controversial. One of reasons why it is still controversial is that the effectiveness is still qualitatively measured. The purpose of this study was to quantitatively determine the immediate effectiveness of the medial parapatellar capsule shrinkage as in clinical setting.</p> <p>Methods</p> <p>Nine cadaveric knees were used to collect lateral displacement data before and after medial shrinkage or open surgery. The force and displacement were recorded while a physician pressed the patella from the medial side to mimic the physical exam used in clinic. Ten healthy subjects were used to test the feasibility of the technique on patients and establish normal range of lateral displacement of the patella under a medial force. The force applied, the resulting displacement and the ratio of force over displacement were compared among four data groups (normal knees, cadaveric knees before medial shrinkage, after shrinkage and after open surgery).</p> <p>Results</p> <p>Displacements of the cadaveric knees both before and after thermal modification were similar to normal subjects, and the applied forces were significantly higher. No significant differences were found between before and after thermal modification groups. After open surgery, displacements were reduced significantly while applied forces were significantly higher.</p> <p>Conclusion</p> <p>No immediate difference was found after thermal shrinkage of the medial parapatellar capsule. Open surgery immediately improved of the lateral stiffness of the knee capsule.</p

    Tendon–bone contact pressure and biomechanical evaluation of a modified suture-bridge technique for rotator cuff repair

    Get PDF
    The aim of the study was to evaluate the time-zero mechanical and footprint properties of a suture-bridge technique for rotator cuff repair in an animal model. Thirty fresh-frozen sheep shoulders were randomly assigned among three investigation groups: (1) cyclic loading, (2) load-to-failure testing, and (3) tendon–bone interface contact pressure measurement. Shoulders were cyclically loaded from 10 to 180 N and displacement to gap formation of 5- and 10-mm at the repair site. Cycles to failure were determined. Additionally, the ultimate tensile strength and stiffness were verified along with the mode of failure. The average contact pressure and pressure pattern were investigated using a pressure-sensitive film system. All of the specimens resisted against 3,000 cycles and none of them reached a gap formation of 10 mm. The number of cycles to 5-mm gap formation was 2,884.5 ± 96.8 cycles. The ultimate tensile strength was 565.8 ± 17.8 N and stiffness was 173.7 ± 9.9 N/mm. The entire specimen presented a unique mode of failure as it is well known in using high strength sutures by pulling them through the tendon. We observed a mean contact pressure of 1.19 ± 0.03 MPa, applied on the footprint area. The fundamental results of our study support the use of a suture-bridge technique for optimising the conditions of the healing biology of a reconstructed rotator cuff tendon. Nevertheless, an individual estimation has to be done if using the suture-bridge technique clinically. Further investigation is necessary to evaluate the cell biological healing process in order to achieve further sufficient advancements in rotator cuff repair

    Attrition among Human Immunodeficiency Virus (HIV)- Infected Patients Initiating Antiretroviral Therapy in China, 2003–2010

    Get PDF
    BACKGROUND: Mortality and morbidity from HIV have dramatically decreased in both high- and low-income countries. However, some patients may not benefit from combination antiretroviral therapy (cART) because of inadequate access to HIV care, including attrition after care initiation. METHODOLOGY/PRINCIPAL FINDINGS: The study population included all HIV-infected patients receiving cART through the Chinese National Free Antiretroviral Treatment Program from 1 January 2003 to 31 December 2010 (n = 106,542). We evaluated retention in HIV care and used multivariable Cox proportional hazard models to identify independent factors predictive of attrition. The cumulative probability of attrition from cART initiation was 9% at 12 months, 13% at 18 months, 16% at 24 months and 24% at 60 months. A number of factors were associated with attrition, including younger age, male gender, and being single or divorced. Patients with higher CD4 cell counts at cART initiation were more likely to drop out of HIV care. The proportion of patients remaining in HIV care increased in more recent calendar years and among patients who initiated modern cART regimens. CONCLUSIONS/SIGNIFICANCE: Retention in HIV care is essential for optimizing individual and public health outcomes. Attrition, even the degree observed in our study, can lead to premature morbidity and mortality, and possibly affect further transmission of HIV and HIV resistant drug variants. Effective strategies to promote retention in HIV care programs are needed. In China these strategies may include focusing particularly on younger male patients and those with higher CD4 cell counts at therapy initiation

    Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics

    Get PDF
    © 2017 The Author(s). Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range
    corecore