199 research outputs found

    A Survey on Unusual Event Detection in Videos

    Get PDF
    As the usage of CCTV cameras in outdoor and indoor locations has increased significantly, one needs to design a system to detect the unusual events, at the time of its occurrence. Computer vision is used for Human Action recognition, which has been widely implemented in the systems, but unusual event detection is lately entering into the limelight. In order to detect the unusual events, supervised techniques, semi-supervised techniques and unsupervised techniques have been adopted. Social force model (SFM) and Force field are used to model the interaction among crowds. Only normal events training samples is not sufficient for detection of unusual events. Double sparse representation has been used as a solution to this, which includes normal and abnormal training data. To develop an intelligent video surveillance system, behavioural representation and behavioural modelling techniques are used. Various machine learning techniques to identify unusual events include: Graph modelling and matching, object trajectory based, object silhouettes based and pixel based approaches. Kullback–Leibler (KL) divergence, Quaternion Discrete Cosine Transformation (QDCT) analysis, hidden Markov model (HMM) and histogram of oriented contextual gradient (HOCG) descriptor are some of the models used are used for detecting unusual events. This paper briefly discusses the above mentioned strategies and pay attention on their pros and cons

    Study on Machine Learning and Deep Learning Methods for Cancer Detection

    Get PDF
    Cancer causes death of about million people every year. Cancer is the frequently recognized and is the major reason of death in men and women. Cancer is a group of diseases involving abnormal cell growth which will spread to other parts of the body. Colonography makes use of low dose radiation Computed tomography (CT) scanning to get an internal view of the cancer tumors making use of special x-ray machine to view tumors. Radiologists examine these images to find tumor like structure using computer tools. As CT Colonography image contain noise such as lungs, small intestine, instruments during image capturing. Cancer occurrence can be detected mainly using shape feature; eliminating shapes similar to tumor is challenging. Hence, to tackle above issues, image processing techniques are used by applying deep learning algorithm- Convolution Neural Network (CNN) and the results are compared with classical machine learning algorithm. The analysis is done with classical machine learning algorithms - Random Forest algorithm (RF) and k-nearest neighbour algorithm (KNN) by extracting texture feature - Local binary pattern (LBP) and shape feature - Histogram oriented gradient (HOG) for comparison

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape

    The Critical Role of N- and C-Terminal Contact in Protein Stability and Folding of a Family 10 Xylanase under Extreme Conditions

    Get PDF
    Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive.In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as ΔF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions

    Smoke-free legislation and child health

    Get PDF
    In this paper, we aim to present an overview of the scientific literature on the link between smoke-free legislation and early-life health outcomes. Exposure to second-hand smoke is responsible for an estimated 166 ,000 child deaths each year worldwide. To protect people from tobacco smoke, the World Health Organization recommends the implementation of comprehensive smoke-free legislation that prohibits smoking in all public indoor spaces, including workplaces, bars and restaurants. The implementation of such legislation has been found to reduce tobacco smoke exposure, encourage people to quit smoking and improve adult health outcomes. There is an increasing body of evidence that shows that children also experience health benefits after implementation of smoke-free legislation. In addition to protecting children from tobacco smoke in public, the link between smoke-free legislation and improved child health is likely to be mediated via a decline in smoking during pregnancy and reduced exposure in the home environment. Recent studies have found that the implementation of smoke-free legislation is associated with a substantial decrease in the number of perinatal deaths, preterm births and hospital attendance for respiratory tract infections and asthma in children, although such benefits are not found in each study. With over 80% of the world’s population currently unprotected by comprehensive smoke-free laws, protecting (unborn) children from the adverse impact of tobacco smoking and SHS exposure holds great potential to benefit public health and should therefore be a key priority for policymakers and health workers alike

    An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data

    Get PDF
    Citation: Shi, Z. Z., Chapes, S. K., Ben-Arieh, D., & Wu, C. H. (2016). An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data. Plos One, 11(8), 39. doi:10.1371/journal.pone.0161131We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-a ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies

    A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork

    Get PDF
    There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript

    CASTLEGUARD : anonymised data streams with guaranteed differential privacy

    Get PDF
    Data streams are commonly used by data controllers to outsource the processing of real-time data to third-party data processors. Data protection legislation and best practice in data management support the view that data controllers are responsible for providing a guarantee of privacy for user data contained within published data streams. Continuously Anonymising STreaming data via adaptive cLustEring (CASTLE) is an established method for anonymising data streams with a guarantee of k-anonymity. However, k-anonymity has been shown to be a weak privacy guarantee that has vulnerabilities in practical applications. In this paper we propose Continuously Anonymising STreaming data via adaptive cLustEring with GUAR-anteed Differential privacy (CASTLEGUARD), a data stream anonymisation algorithm that provides a reliable guarantee of k-anonymity, l-diversity and differential privacy to data subjects. We analyse CASTLEGUARD to show that, through safe k-anonymisation and β-sampling, the proposed approach satisfies differentially private k-anonymity. Further, we demonstrate the efficacy of the approach in the context of machine learning, presenting experimental analysis to demonstrate that it can be used to protect the individual privacy of users whilst maintaining the utility of a data stream
    corecore