95 research outputs found

    PCV17: QUALITY OF LIFE AND PATIENT PREFERENCE AS PREDICTORS FOR RESOURCE UTILIZATION AMONG PATIENTS WITH HEART FAILURE; INTERIM ANALYSIS

    Get PDF

    Electronic health records to facilitate clinical research

    No full text
    Electronic health records (EHRs) provide opportunities to enhance patient care, embed performance measures in clinical practice, and facilitate clinical research. Concerns have been raised about the increasing recruitment challenges in trials, burdensome and obtrusive data collection, and uncertain generalizability of the results. Leveraging electronic health records to counterbalance these trends is an area of intense interest. The initial applications of electronic health records, as the primary data source is envisioned for observational studies, embedded pragmatic or post-marketing registry-based randomized studies, or comparative effectiveness studies. Advancing this approach to randomized clinical trials, electronic health records may potentially be used to assess study feasibility, to facilitate patient recruitment, and streamline data collection at baseline and follow-up. Ensuring data security and privacy, overcoming the challenges associated with linking diverse systems and maintaining infrastructure for repeat use of high quality data, are some of the challenges associated with using electronic health records in clinical research. Collaboration between academia, industry, regulatory bodies, policy makers, patients, and electronic health record vendors is critical for the greater use of electronic health records in clinical research. This manuscript identifies the key steps required to advance the role of electronic health records in cardiovascular clinical research

    Electronic health records to facilitate clinical research

    Get PDF
    Electronic health records (EHRs) provide opportunities to enhance patient care, embed performance measures in clinical practice, and facilitate clinical research. Concerns have been raised about the increasing recruitment challenges in trials, burdensome and obtrusive data collection, and uncertain generalizability of the results. Leveraging electronic health records to counterbalance these trends is an area of intense interest. The initial applications of electronic health records, as the primary data source is envisioned for observational studies, embedded pragmatic or post-marketing registry-based randomized studies, or comparative effectiveness studies. Advancing this approach to randomized clinical trials, electronic health records may potentially be used to assess study feasibility, to facilitate patient recruitment, and streamline data collection at baseline and follow-up. Ensuring data security and privacy, overcoming the challenges associated with linking diverse systems and maintaining infrastructure for repeat use of high quality data, are some of the challenges associated with using electronic health records in clinical research. Collaboration between academia, industry, regulatory bodies, policy makers, patients, and electronic health record vendors is critical for the greater use of electronic health records in clinical research. This manuscript identifies the key steps required to advance the role of electronic health records in cardiovascular clinical research.</p

    Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS

    Get PDF
    Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)2, Hg(GS)2, MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury–amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants

    Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1

    Get PDF
    Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90

    Gaviscon® vs. omeprazole in symptomatic treatment of moderate gastroesophageal reflux. a direct comparative randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical management of GERD mainly uses proton pump inhibitors. Alginates also have proven efficacy. The aim of this trial was to compare short-term efficacy of an alginate (Gaviscon<sup>®</sup>, 4 × 10 mL/day) and omeprazole (20 mg/day) on GERD symptoms in general practice.</p> <p>Methods</p> <p>A 14-day multicentre randomised double-blind double-dummy non-inferiority trial compared Gaviscon<sup>® </sup>(4 × 10 mL/day) and omeprazole (20 mg/day) in patients with 2-6 day heartburn episodes weekly without alarm signals. The primary outcome was the mean time to onset of the first 24-h heartburn-free period after initial dosing. Secondary outcomes were the proportion of patients without heartburn by D7, pain relief by D7, and reduction in pain intensity by D7 and D14.</p> <p>Results</p> <p>278 patients were recruited; 120 were included in the Gaviscon<sup>® </sup>group and 121 in the omeprazole group for the per protocol non-inferiority analysis. The mean time to onset of the first 24-h heartburn-free period after initial dosing was 2.0 (± 2.2) days for Gaviscon<sup>® </sup>and 2.0 (± 2.3) days for omeprazole (<it>p </it>= 0.93); mean intergroup difference was 0.01 ± 1.55 days (95% CI = -0.41 to 0.43): i.e., less than the lower limit of the 95% CI of -0.5 days predetermined to demonstrate non-inferiority. The mean number of heartburn-free days by D7 was significantly greater in the omeprazole group: 3.7 ± 2.3 days vs. 3.1 ± 2.1 (<it>p </it>= 0.02). On D7, overall quality of pain relief was slightly in favour of omeprazole (<it>p </it>= 0.049). There was no significant difference in the reduction in pain intensity between groups by D7 (<it>p = </it>0.11) or D14 (<it>p = </it>0.08). Tolerance and safety were good and comparable in both groups.</p> <p>Conclusion</p> <p>Gaviscon<sup>® </sup>was non-inferior to omeprazole in achieving a 24-h heartburn-free period in moderate episodic heartburn, and is a relevant effective alternative treatment in moderate GERD in primary care.</p> <p>Trial registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN62203233">ISRCTN62203233</a>.</p

    The transiting exoplanet community early release science program for JWST

    Get PDF
    The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, time-series observations required for such investigations have unique technical challenges, and prior experience with other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative datasets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the time-series modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, time-series instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission
    corecore