22 research outputs found

    ORGANIC AGRICULTURE AND FOOD SECURITY

    Get PDF
    Modelling the impacts of organic production up-scaled to regional and global levels gives an initial quan-tification of the potential extent of changes that large-scale conversion might induce. Optimistic estimates of change with respect to organic yield potential lead to modest impacts on global commodity prices, production, and trade. Conversion in high-input regions in Europe and North America to certified organic decreases production and increases commodity prices. Hunger in this scenario slightly worsens. Transition of low-input areas in Sub-Saharan Africa to non-certified organic leads to in-creased production and decreased prices. Food secu-rity improves slightly in this scenario. The switch for low-input regions helps decrease trade dependency in some commodities. Achievement of productivity levels in these scenarios is dependent on many factors that introduce a significant amount of uncertainty in the results. The extent of these impacts can be improved if concerted effort in research and development for yield and productivity enhancement is supported

    Current warming will reduce yields unless maize breeding and seed systems adapt immediately

    Get PDF
    The development of crop varieties that are better suited to new climatic conditions is vital for future food production1, 2. Increases in mean temperature accelerate crop development, resulting in shorter crop durations and reduced time to accumulate biomass and yield3, 4. The process of breeding, delivery and adoption (BDA) of new maize varieties can take up to 30 years. Here, we assess for the first time the implications of warming during the BDA process by using five bias-corrected global climate models and four representative concentration pathways with realistic scenarios of maize BDA times in Africa. The results show that the projected difference in temperature between the start and end of the maize BDA cycle results in shorter crop durations that are outside current variability. Both adaptation and mitigation can reduce duration loss. In particular, climate projections have the potential to provide target elevated temperatures for breeding. Whilst options for reducing BDA time are highly context dependent, common threads include improved recording and sharing of data across regions for the whole BDA cycle, streamlining of regulation, and capacity building. Finally, we show that the results have implications for maize across the tropics, where similar shortening of duration is projected

    Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels

    Get PDF
    Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large

    Climate change effects on people’s livelihood

    Get PDF
    Generally climate is defined as the long-term average weather conditions of a particular place, region, or the world. Key climate variables include surface conditions such as temperature, precipitation, and wind. The Intergovernmental Panel on Climate Change (IPCC) broadly defined climate change as any change in the state of climate which persists for extended periods, usually for decades or longer (Allwood et al. 2014). Climate change may occur due to nature’s both internal and external processes. External process involves anthropogenic emission of greenhouse gases to the atmosphere, and volcanic eruptions. The United Nations Framework Convention on Climate Change (UNFCCC) made a distinction between climate change attributable to human contribution to atmospheric composition and natural climate variability. In its Article 1, the UNFCCC defines climate change as “a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods” (United Nations 1992, p. 7)
    corecore