291 research outputs found

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    A DNA repair-independent role for alkyladenine DNA glycosylase in alkylation-induced unfolded protein response.

    Get PDF
    Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation

    Induction of sustained clinical remission in early axial spondyloarthritis following certolizumab pegol treatment: 48-week outcomes from C-OPTIMISE

    Get PDF
    INTRODUCTION: Achievement of remission is a key treatment goal for patients with axial spondyloarthritis (axSpA). C-OPTIMISE assessed achievement of sustained clinical remission in patients with axSpA, including radiographic (r) and non-radiographic (nr) axSpA, during certolizumab pegol (CZP) treatment, and subsequent maintenance of remission following CZP dose continuation, dose reduction or withdrawal. Here, we report outcomes from the first 48 weeks (induction period) of C-OPTIMISE, during which patients received open-label CZP. METHODS: C-OPTIMISE (NCT02505542) was a two-part, multicenter, phase 3b study in adult patients with early axSpA (r-/nr-axSpA), including a 48-week open-label induction period followed by a 48-week maintenance period. Patients with active adult-onset axSpA, < 5 years' symptom duration, and fulfilling Assessment of SpondyloArthritis international Society classification criteria, were included. During the induction period, patients received a loading dose of CZP 400 mg at weeks 0, 2, and 4, followed by CZP 200 mg every 2 weeks (Q2W) up to week 48. The main outcome of the 48-week induction period was the achievement of sustained clinical remission (defined as an Ankylosing Spondylitis Disease Activity Score [ASDAS] < 1.3 at week 32 and < 2.1 at week 36 [or vice versa], and < 1.3 at week 48). RESULTS: In total, 736 patients (407 with r-axSpA, 329 with nr-axSpA) were enrolled into the study. At week 48, 43.9% (323/736) of patients achieved sustained remission, including 42.8% (174/407) of patients with r-axSpA and 45.3% (149/329) with nr-axSpA. Patients also demonstrated substantial improvements in axSpA symptoms, MRI outcomes and quality of life measures. Adverse events occurred in 67.9% (500/736) of patients, of which 6.0% (44/736) were serious. CONCLUSIONS: Over 40% of patients with early axSpA achieved sustained remission during 48 weeks of open-label CZP treatment. Additionally, patients across the axSpA spectrum demonstrated substantial improvements in imaging outcomes and quality of life following treatment. No new safety signals were identified. TRIAL REGISTRATION: NCT02505542

    Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotic and prokaryotic cells, homologous recombination is an accurate mechanism to generate genetic diversity, and it is also used to repair DNA double strand-breaks. <it>RAD52 </it>epistasis group genes involved in recombinational DNA repair, including <it>mre11, rad50, nsb1/xrs2, rad51, rad51c/rad57, rad51b/rad55, rad51d, xrcc2, xrcc3, rad52, rad54, rad54b/rdh54 </it>and <it>rad59 </it>genes, have been studied in human and yeast cells. Notably, the RAD51 recombinase catalyses strand transfer between a broken DNA and its undamaged homologous strand, to allow damaged region repair. In protozoan parasites, homologous recombination generating antigenic variation and genomic rearrangements is responsible for virulence variation and drug resistance. However, in <it>Entamoeba histolytica </it>the protozoan parasite responsible for human amoebiasis, DNA repair and homologous recombination mechanisms are still unknown.</p> <p>Results</p> <p>In this paper, we initiated the study of the mechanism for DNA repair by homologous recombination in the primitive eukaryote <it>E. histolytica </it>using UV-C (150 J/m<sup>2</sup>) irradiated trophozoites. DNA double strand-breaks were evidenced in irradiated cells by TUNEL and comet assays and evaluation of the EhH2AX histone phosphorylation status. In <it>E. histolytica </it>genome, we identified genes homologous to yeast and human RAD52 epistasis group genes involved in DNA double strand-breaks repair by homologous recombination. Interestingly, the <it>E. histolytica </it>RAD52 epistasis group related genes were differentially expressed before and after UV-C treatment. Next, we focused on the characterization of the putative recombinase EhRAD51, which conserves the typical architecture of RECA/RAD51 proteins. Specific antibodies immunodetected EhRAD51 protein in both nuclear and cytoplasmic compartments. Moreover, after DNA damage, EhRAD51 was located as typical nuclear <it>foci</it>-like structures in <it>E. histolytica </it>trophozoites. Purified recombinant EhRAD51 exhibited DNA binding and pairing activities and exchanging reactions between homologous strands <it>in vitro</it>.</p> <p>Conclusion</p> <p><it>E. histolytica </it>genome contains most of the RAD52 epistasis group related genes, which were differentially expressed when DNA double strand-breaks were induced by UV-C irradiation. In response to DNA damage, EhRAD51 protein is overexpressed and relocalized in nuclear <it>foci</it>-like structures. Functional assays confirmed that EhRAD51 is a <it>bonafide </it>recombinase. These data provided the first insights about the potential roles of the <it>E. histolytica </it>RAD52 epistasis group genes and EhRAD51 protein function in DNA damage response of this ancient eukaryotic parasite.</p

    Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity

    Get PDF
    Background: The computation of pattern motion in visual area MT based on motion input from area V1 has been investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion computation at positions with 2D features. Methodology/Principal Findings: Recent experiments revealed that neither of the two concepts alone is sufficient to explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be combined into one common architecture to explain these findings. The key features of the model are the computation of 1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback processing. Our results are also in line with findings concerning the solution of the aperture problem. Conclusions/Significance: We propose a new neural model for MT pattern computation and motion disambiguation that i

    Relaxin: Review of Biology and Potential Role in Treating Heart Failure

    Get PDF
    Relaxin is a naturally occurring human peptide initially identified as a reproductive hormone. More recently, relaxin has been shown to play a key role in the maternal hemodynamic and renal adjustments that accommodate pregnancy. An understanding of these physiologic effects has led to the evaluation of relaxin as a pharmacologic agent for the treatment of patients with acute heart failure. Preliminary results have been encouraging. In addition, the other known biologic properties of relaxin, including anti-inflammatory effects, extracellular matrix remodeling effects, and angiogenic and anti-ischemic effects, all may play a role in potential benefits of relaxin therapy. Ongoing, large-scale clinical testing will provide additional insights into the potential role of relaxin in the treatment of heart failure

    Functional and Transcriptional Induction of Aquaporin-1 Gene by Hypoxia; Analysis of Promoter and Role of Hif-1α

    Get PDF
    Aquaporin-1 (AQP1) is a water channel that is highly expressed in tissues with rapid O2 transport. It has been reported that this protein contributes to gas permeation (CO2, NO and O2) through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5′ proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl2) and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases

    Egg Production in a Coastal Seabird, the Glaucous-Winged Gull (Larus glaucescens), Declines during the Last Century

    Get PDF
    Seabirds integrate information about oceanic ecosystems across time and space, and are considered sensitive indicators of marine conditions. To assess whether hypothesized long-term foodweb changes such as forage fish declines may be reflected in a consumer's life history traits over time, I used meta-regression to evaluate multi-decadal changes in aspects of egg production in the glaucous-winged gull (Larus glaucescens), a common coastal bird. Study data were derived from literature searches of published papers and unpublished historical accounts, museum egg collections, and modern field studies, with inclusion criteria based on data quality and geographic area of the original study. Combined historical and modern data showed that gull egg size declined at an average of 0.04 cc y−1 from 1902 (108 y), equivalent to a decline of 5% of mean egg volume, while clutch size decreased over 48 y from a mean of 2.82 eggs per clutch in 1962 to 2.25 in 2009. There was a negative relationship between lay date and mean clutch size in a given year, with smaller clutches occurring in years where egg laying commenced later. Lay date itself advanced over time, with commencement of laying presently (2008–2010) 7 d later than in previous studies (1959–1986). This study demonstrates that glaucous-winged gull investment in egg production has declined significantly over the past ∼50–100 y, with such changes potentially contributing to recent population declines. Though gulls are generalist feeders that should readily be able to buffer themselves against food web changes, they are likely nutritionally constrained during the early breeding period, when egg production requirements are ideally met by consumption of high-quality prey such as forage fish. This study's results suggest a possible decline in the availability of such prey, and the incremental long-term impoverishment of a coastal marine ecosystem bordering one of North America's rapidly growing urban areas
    • …
    corecore