312 research outputs found

    Recovering probabilities for nucleotide trimming processes for T cell receptor TRA and TRG V-J junctions analyzed with IMGT tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleotides are trimmed from the ends of variable (V), diversity (D) and joining (J) genes during immunoglobulin (IG) and T cell receptor (TR) rearrangements in B cells and T cells of the immune system. This trimming is followed by addition of nucleotides at random, forming the N regions (N for nucleotides) of the V-J and V-D-J junctions. These processes are crucial for creating diversity in the immune response since the number of trimmed nucleotides and the number of added nucleotides vary in each B or T cell. IMGT<sup>ยฎ </sup>sequence analysis tools, IMGT/V-QUEST and IMGT/JunctionAnalysis, are able to provide detailed and accurate analysis of the final observed junction nucleotide sequences (tool "output"). However, as trimmed nucleotides can potentially be replaced by identical N region nucleotides during the process, the observed "output" represents a <it>biased </it>estimate of the "true trimming process."</p> <p>Results</p> <p>A probabilistic approach based on an analysis of the standardized tool "output" is proposed to infer the probability distribution of the "true trimmming process" and to provide plausible biological hypotheses explaining this process. We collated a benchmark dataset of TR alpha (TRA) and TR gamma (TRG) V-J rearranged sequences and junctions analysed with IMGT/V-QUEST and IMGT/JunctionAnalysis, the nucleotide sequence analysis tools from IMGT<sup>ยฎ</sup>, the international ImMunoGeneTics information system<sup>ยฎ</sup>, <url>http://imgt.cines.fr</url>. The standardized description of the tool output is based on the IMGT-ONTOLOGY axioms and concepts. We propose a simple first-order model that attempts to transform the observed "output" probability distribution into an estimate closer to the "true trimming process" probability distribution. We use this estimate to test the hypothesis that Poisson processes are involved in trimming. This hypothesis was not rejected at standard confidence levels for three of the four trimming processes: TRAV, TRAJ and TRGV.</p> <p>Conclusion</p> <p>By using trimming of rearranged TR genes as a benchmark, we show that a probabilistic approach, applied to IMGT<sup>ยฎ </sup>standardized tool "outputs" opens the way to plausible hypotheses on the events involved in the "true trimming process" and eventually to an exact quantification of trimming itself. With increasing high-throughput of standardized immunogenetics data, similar probabilistic approaches will improve understanding of processes so far only characterized by the "output" of standardized tools.</p

    IGH (immunoglobulin heavy)

    Get PDF
    Review on IGH (immunoglobulin heavy), with data on DNA, on the protein encoded, and where the gene is implicated

    Pitfalls in TCR gene clonality testing: teaching cases

    Get PDF
    Clonality testing in T-lymphoproliferations has technically become relatively easy to perform in routine laboratories using standardized multiplex polymerase chain reaction protocols for T-cell receptor (TCR) gene analysis as developed by the BIOMED-2 Concerted Action BMH4-CT98-3936. Expertise with clonality diagnostics and knowledge about the biology of TCR gene recombination are essential for correct interpretation of TCR clonality data. Several immunobiological and technical pitfalls that should be taken into account to avoid misinterpretation of data are addressed in this report. Furthermore, we discuss the need to integrate the molecular data with those from immunohistology, and preferably also flow cytometric immunophenotyping, for appropriate interpretation. Such an interactive, multidisciplinary diagnostic model guarantees integration of available data to reach the most reliable diagnosis

    Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4+ T-cell repertoire selection

    Get PDF
    Human CD4+ ฮฑฮฒ T cells are activated via T-cell receptor recognition of peptide epitopes presented by major histocompatibility complex (MHC) class II (MHC-II). The open ends of the MHC-II binding groove allow peptide epitopes to extend beyond a central nonamer core region at both the amino- and carboxy-terminus. We have previously found that these non-bound C-terminal residues can alter T cell activation in an MHC allele-transcending fashion, although the mechanism for this effect remained unclear. Here we show that modification of the C-terminal peptide-flanking region of an influenza hemagglutinin (HA305โˆ’320) epitope can alter T-cell receptor binding affinity, T-cell activation and repertoire selection of influenza-specific CD4+ T cells expanded from peripheral blood. These data provide the first demonstration that changes in the C-terminus of the peptide-flanking region can substantially alter T-cell receptor binding affinity, and indicate a mechanism through which peptide flanking residues could influence repertoire selection

    GM and KM immunoglobulin allotypes in the Galician population: new insights into the peopling of the Iberian Peninsula

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current genetic structure of Iberian populations has presumably been affected by the complex orography of its territory, the different people and civilizations that settled there, its ancient and complex history, the diverse and persistent sociocultural patterns in its different regions, and also by the effects of the Iberian Peninsula representing a refugium area after the last glacial maximum. This paper presents the first data on <it>GM </it>and <it>KM </it>immunoglobulin allotypes in the Galician population and, thus, provides further insights into the extent of genetic diversity in populations settled in the geographic extremes of the Cantabrian region of northern Spain. Furthermore, the genetic relationships of Galicians with other European populations have been investigated.</p> <p>Results</p> <p>Galician population shows a genetic profile for <it>GM </it>haplotypes that is defined by the high presence of the European Mediterranean <it>GM</it>*<it>3 23 5* </it>haplotype, and the relatively high incidence of the African marker <it>GM*1,17 23' 5*</it>. Data based on comparisons between Galician and other Spanish populations (mainly from the north of the peninsula) reveal a poor correlation between geographic and genetic distances (<it>r </it>= 0.30, <it>P </it>= 0.105), a noticeable but variable genetic distances between Galician and Basque subpopulations, and a rather close genetic affinity between Galicia and Valencia, populations which are geographically separated by a long distance and have quite dissimilar cultures and histories. Interestingly, Galicia occupies a central position in the European genetic map, despite being geographically placed at one extreme of the European continent, while displaying a close genetic proximity to Portugal, a finding that is consistent with their shared histories over centuries.</p> <p>Conclusion</p> <p>These findings suggest that the population of Galicia is the result of a relatively balanced mixture of European populations or of the ancestral populations that gave rise to them. This would support the importance of the migratory movements that have taken place in Europe over the course of recent human history and their effects on the European genetic landscape.</p

    Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation

    Get PDF
    Single-domain antibody fragments (VHHs) have several beneficial properties as compared to conventional antibody fragments. However, their small size complicates their toxin- and virus-neutralizing capacity. We isolated 27 VHHs binding Escherichia coli heat-labile toxin and expressed these in Saccharomyces cerevisiae. The most potent neutralizing VHH (LT109) was N-glycosylated, resulting in a large increase in molecular mass. This suggests that N-glycosylation of LT109 improves its neutralizing capacity. Indeed, deglycosylation of LT109 decreased its neutralizing capacity three- to fivefold. We also studied the effect of glycosylation of two previously isolated VHHs on their ability to neutralize foot-and-mouth disease virus. For this purpose, these VHHs that lacked potential N-glycosylation sites were genetically fused to another VHH that was known to be glycosylated. The resulting fusion proteins were also N-glycosylated. They neutralized the virus at at least fourfold-lower VHH concentrations as compared to the single, non-glycosylated VHHs and at at least 50-fold-lower VHH concentrations as compared to their deglycosylated counterparts. Thus, we have shown that N-glycosylation of VHHs contributes to toxin- and virus-neutralizing capacity

    Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells

    Get PDF
    Prognosis of patients with glioblastoma (GBM) remains very poor, thus making the development of new drugs urgent. Resveratrol (Rsv) is a natural compound that has several beneficial effects such as neuroprotection and cytotoxicity for several GBM cell lines. Here we evaluated the mechanism of action of Rsv on human GBM cell lines, focusing on the role of autophagy and its crosstalk with apoptosis and cell cycle control. We further evaluated the role of autophagy and the effect of Rsv on GBM Cancer Stem Cells (gCSCs), involved in GBM resistance and recurrence. Glioma cells treated with Rsv was tested for autophagy, apoptosis, necrosis, cell cycle and phosphorylation or expression levels of key players of these processes. Rsv induced the formation of autophagosomes in three human GBM cell lines, accompanied by an upregulation of autophagy proteins Atg5, beclin-1 and LC3-II. Inhibition of Rsv-induced autophagy triggered apoptosis, with an increase in Bax and cleavage of caspase-3. While inhibition of apoptosis or autophagy alone did not revert Rsv-induced toxicity, inhibition of both processes blocked this toxicity. Rsv also induced a S-G2/M phase arrest, accompanied by an increase on levels of pCdc2(Y15), cyclin A, E and B, and pRb (S807/811) and a decrease of cyclin D1. Interestingly, this arrest was dependent on the induction of autophagy, since inhibition of Rsv-induced autophagy abolishes cell cycle arrest and returns the phosphorylation of Cdc2(Y15) and Rb(S807/811), and levels of cyclin A, and B to control levels. Finally, inhibition of autophagy or treatment with Rsv decreased the sphere formation and the percentage of CD133 and OCT4-positive cells, markers of gCSCs. In conclusion, the crosstalk among autophagy, cell cycle and apoptosis, together with the biology of gCSCs, has to be considered in tailoring pharmacological interventions aimed to reduce glioma growth using compounds with multiple targets such as Rsv
    • โ€ฆ
    corecore