216 research outputs found

    A randomized, placebo-controlled phase 2 trial of laquinimod in primary progressive multiple sclerosis

    Get PDF
    OBJECTIVE: To evaluate efficacy, safety, and tolerability of laquinimod in patients with primary progressive multiple sclerosis (PPMS). METHODS: In the randomized, double-blind, placebo-controlled, phase 2 study ARPEGGIO (A Randomized Placebo-controlled trial Evaluating laquinimod in PPMS, Gauging Gradations In MRI and clinical Outcomes), eligible PPMS patients were randomized 1:1:1 to receive once-daily oral laquinimod 0.6 mg or 1.5 mg or matching placebo. Percentage brain volume change (PBVC; primary endpoint) from baseline to week 48 was assessed by MRI. Secondary and exploratory endpoints included clinical and MRI measures. Efficacy endpoints were evaluated using a predefined, hierarchical statistical testing procedure. Safety was monitored throughout the study. The laquinimod 1.5 mg dose arm was discontinued on January 1, 2016 due to findings of cardiovascular events. RESULTS: 374 patients were randomized to laquinimod 0.6 mg (n = 139) or 1.5 mg (n = 95) or placebo (n = 140). ARPEGGIO did not meet the primary endpoint of significant treatment effect with laquinimod 0.6 mg versus placebo on PBVC from baseline to week 48 (adjusted mean difference = 0.016%, p = 0.903). Laquinimod 0.6 mg reduced the number of new T2 brain lesions at week 48 (risk ratio = 0.4; 95% confidence interval, 0.26-0.69; p = 0.001). Incidence of adverse events was higher among patients treated with laquinimod 0.6 mg (83%) versus laquinimod 1.5 mg (66%) and placebo (78%). CONCLUSIONS: Laquinimod 0.6 mg did not demonstrate a statistically significant effect on brain volume loss in PPMS at week 48

    Severity Assessment of Lower Respiratory Tract Infection in Malawi: Derivation of a Novel Index (SWAT-Bp) Which Outperforms CRB-65

    Get PDF
    OBJECTIVE: To assess the validity of CRB-65 (Confusion, Respiratory rate >30 breaths/min, BP<90/60 mmHg, age >65 years) as a pneumonia severity index in a Malawian hospital population, and determine whether an alternative score has greater accuracy in this setting. DESIGN: Forty three variables were prospectively recorded during the first 48 hours of admission in all patients admitted to Queen Elizabeth Central Hospital, Malawi, for management of lower respiratory tract infection over a two month period (N = 240). Calculation of sensitivity and specificity for CRB-65 in predicting mortality was followed by multivariate modeling to create a score with superior performance in this population. RESULTS: Median age 37, HIV prevalence 79.9%, overall mortality 18.3%. CRB-65 predicted mortality poorly, indicated by the area under the ROC curve of 0.649. Independent predictors of death were: Male sex, “S” (AOR 2.6); Wasting, “W” (AOR 6.6); non-ambulatory, “A” (AOR 2.5); Temp >38°C or <35°C, “T” (AOR 3.2); BP<100/60, “Bp” (AOR 3.7). Combining these factors to form a severity index (SWAT-Bp) predicted mortality with high sensitivity and specificity (AUC: 0.867). Mortality for scores 0–5 was 0%, 3.3%, 7.4%, 29.2%, 61.5% and 87.5% respectively. A score ≥3 was 84% sensitive and 77% specific for mortality prediction, with a negative predictive value of 95.8%. CONCLUSION: CRB-65 performs poorly in this population. The SWAT-Bp score can accurately stratify patients; ≤2 indicates non-severe infection (mortality 4.4%) and ≥3 severe illness (mortality 45%)

    Quinpramine Ameliorates Rat Experimental Autoimmune Neuritis and Redistributes MHC Class II Molecules

    Get PDF
    Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine—generated from imipramine and quinacrine—redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies

    Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways

    Get PDF
    The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) “toxicity pathways” (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair

    Clinical correlates of grey matter pathology in multiple sclerosis

    Get PDF
    Traditionally, multiple sclerosis has been viewed as a disease predominantly affecting white matter. However, this view has lately been subject to numerous changes, as new evidence of anatomical and histological changes as well as of molecular targets within the grey matter has arisen. This advance was driven mainly by novel imaging techniques, however, these have not yet been implemented in routine clinical practice. The changes in the grey matter are related to physical and cognitive disability seen in individuals with multiple sclerosis. Furthermore, damage to several grey matter structures can be associated with impairment of specific functions. Therefore, we conclude that grey matter damage - global and regional - has the potential to become a marker of disease activity, complementary to the currently used magnetic resonance markers (global brain atrophy and T2 hyperintense lesions). Furthermore, it may improve the prediction of the future disease course and response to therapy in individual patients and may also become a reliable additional surrogate marker of treatment effect

    A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury

    Get PDF
    In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)

    Anti-Inflammatory Effect of Fluvastatin on IL-8 Production Induced by Pseudomonas aeruginosa and Aspergillus fumigatus Antigens in Cystic Fibrosis

    Get PDF
    International audienceBACKGROUND: Early in life, patients with cystic fibrosis (CF) are infected with microorganisms including bacteria and fungi, particularly Pseudomonas aeruginosa and Aspergillus fumigatus. Since recent research has identified the anti-inflammatory properties of statins (besides their lipid-lowering effects), we investigated the effect of fluvastatin on the production of the potent neutrophil chemoattractant chemokine, IL-8, in whole blood from CF patients, stimulated by Pseudomonas aeruginosa (LPS) and Aspergillus fumigatus (AFA) antigens. RESULTS: Whole blood from adult patients with CF and from healthy volunteers was collected at the Rennes University Hospital (France). Blood was pretreated for 1 h with fluvastatin (0-300 µM) and incubated for 24 h with LPS (10 µg/mL) and/or AFA (diluted 1/200). IL-8 protein levels, quantified by ELISA, were increased in a concentration-dependent manner when cells were stimulated by LPS or AFA. Fluvastatin strongly decreased the levels of IL-8, in a concentration-dependent manner, in whole blood from CF patients. However, its inhibitory effect was decreased or absent in whole blood from healthy subjects. Furthermore, the inhibition induced by fluvastatin in CF whole blood was reversed in the presence of intermediates within the cholesterol biosynthesis pathway, mevalonate, farnesyl pyprophosphate or geranylgeranyl pyrophosphate that activate small GTPases by isoprenylation. CONCLUSIONS: For the first time, the inhibitory effects of fluvastatin on CF systemic inflammation may reveal the important therapeutic potential of statins in pathological conditions associated with the over-production of pro-inflammatory cytokines and chemokines as observed during the manifestation of CF. The anti-inflammatory effect could be related to the modulation of the prenylation of signalling proteins
    • …
    corecore