3,983 research outputs found
An analysis method for time ordered data processing of Dark Matter experiments
The analysis of the time ordered data of Dark Matter experiments is becoming
more and more challenging with the increase of sensitivity in the ongoing and
forthcoming projects. Combined with the well-known level of background events,
this leads to a rather high level of pile-up in the data. Ionization,
scintillation as well as bolometric signals present common features in their
acquisition timeline: low frequency baselines, random gaussian noise, parasitic
noise and signal characterized by well-defined peaks. In particular, in the
case of long-lasting signals such as bolometric ones, the pile-up of events may
lead to an inaccurate reconstruction of the physical signal (misidentification
as well as fake events). We present a general method to detect and extract
signals in noisy data with a high pile-up rate and qe show that events from few
keV to hundreds of keV can be reconstructed in time ordered data presenting a
high pile-up rate. This method is based on an iterative detection and fitting
procedure combined with prior wavelet-based denoising of the data and baseline
subtraction. {We have tested this method on simulated data of the MACHe3
prototype experiment and shown that the iterative fitting procedure allows us
to recover the lowest energy events, of the order of a few keV, in the presence
of background signals from a few to hundreds of keV. Finally we applied this
method to the recent MACHe3 data to successfully measure the spectrum of
conversion electrons from Co57 source and also the spectrum of the background
cosmic muons
Reflexion M\"ossbauer analysis of the in situ oxidation products hydroxycarbonate green rust
The purpose of this study is to determine the nature of the oxidation
products of FeII-III hydroxycarbonate FeII4FeIII2(OH)12CO3~3H2O (green rust
GR(CO32-)) by using the miniaturised M\"ossbauer spectrometer MIMOS II. Two
M\"ossbauer measurements methods are used: method (i) with green rust pastes
coated with glycerol and spread into Plexiglas sample holders, and method (ii)
with green rust pastes in the same sample holders but introduced into a
gas-tight cell with a beryllium window under a continuous nitrogen flow. Method
(ii) allows us to follow the continuous deprotonation of GR(CO32-) into the
fully ferric deprotonated form FeIII6O4(OH)8CO3~3H2O by adding the correct
amount of H2O2, without any further oxidation or degradation of the samples
Lexical Influences on Spoken Spondaic Word Recognition in Hearing-Impaired Patients.
Top-down contextual influences play a major part in speech understanding, especially in hearing-impaired patients with deteriorated auditory input. Those influences are most obvious in difficult listening situations, such as listening to sentences in noise but can also be observed at the word level under more favorable conditions, as in one of the most commonly used tasks in audiology, i.e., repeating isolated words in silence. This study aimed to explore the role of top-down contextual influences and their dependence on lexical factors and patient-specific factors using standard clinical linguistic material. Spondaic word perception was tested in 160 hearing-impaired patients aged 23-88 years with a four-frequency average pure-tone threshold ranging from 21 to 88 dB HL. Sixty spondaic words were randomly presented at a level adjusted to correspond to a speech perception score ranging between 40 and 70% of the performance intensity function obtained using monosyllabic words. Phoneme and whole-word recognition scores were used to calculate two context-influence indices (the j factor and the ratio of word scores to phonemic scores) and were correlated with linguistic factors, such as the phonological neighborhood density and several indices of word occurrence frequencies. Contextual influence was greater for spondaic words than in similar studies using monosyllabic words, with an overall j factor of 2.07 (SD = 0.5). For both indices, context use decreased with increasing hearing loss once the average hearing loss exceeded 55 dB HL. In right-handed patients, significantly greater context influence was observed for words presented in the right ears than for words presented in the left, especially in patients with many years of education. The correlations between raw word scores (and context influence indices) and word occurrence frequencies showed a significant age-dependent effect, with a stronger correlation between perception scores and word occurrence frequencies when the occurrence frequencies were based on the years corresponding to the patients' youth, showing a "historic" word frequency effect. This effect was still observed for patients with few years of formal education, but recent occurrence frequencies based on current word exposure had a stronger influence for those patients, especially for younger ones
Estimation of the oceanic pCO<sub>2</sub> in the North Atlantic from VOS lines in-situ measurements: parameters needed to generate seasonally mean maps
Automated instruments on board Volunteer Observing Ships (VOS) have provided high-frequency pCO<sub>2</sub> measurements over basin-wide regions for a decade or so. In order to estimate regional air-sea CO<sub>2</sub> fluxes, it is necessary to interpolate between in-situ measurements to obtain maps of the marine pCO<sub>2</sub>. Such an interpolation remains, however, a difficult task because VOS lines are too distant from each other to capture the high pCO<sub>2</sub> variability. Relevant physical parameters available at large scale are thus necessary to serve as a guide to estimate the pCO<sub>2</sub> values between the VOS lines. Satellites do not measure pCO<sub>2</sub> but they give access to parameters related to the processes that control its variability, such as sea surface temperature (SST). In this paper we developed a method to compute pCO<sub>2</sub> maps using satellite data (SST and CHL, the chlorophyll concentration), combined with a climatology of the mixed-layer depth (MLD). Using 15 401 measurements of surface pCO<sub>2</sub> acquired in the North Atlantic between UK and Jamaica, between June 1994 and August 1995, we show that the parameterization of pCO<sub>2</sub> as a function of SST, CHL and MLD yields more realistic pCO<sub>2</sub> values than parameterizations that have been widely used in the past, based on SST, latitude, longitude or SST only. This parameterization was then used to generate seasonal maps of pCO<sub>2</sub> over the North Atlantic. Results show that our approach yields the best marine pCO<sub>2</sub> estimates, both in terms of absolute accuracy, when compared with an independent data set, and of geographical patterns, when compared to the climatology of Takahashi et al. (2002). This suggests that monitoring the seasonal variability of pCO<sub>2</sub> over basin-wide regions is possible, provided that sufficient VOS lines are available
Project of a superfluid He3 detector for direct detection of non-baryonic dark matter : MACHe3
MACHe3 (MAtrix of Cells of superfluid Helium 3) is a project of non-baryonic
Dark Matter search using superfluid He3 as sensitive medium. Simulations on a
high granularity matrix show very good rejection against background events.
First results on a prototype cell are very encouraging. Neutron detection has
been highlighted as well as cosmic muon detection. A phenomenological study has
been done with the DarkSUSY code to investigate complementarity of MACHe3 with
existing Dark Matter detectors.Comment: 5 pages, 5 figures, to appear in Proceedings of the 4th Marseille
International Cosmology Conferenc
Experiences of aiding autobiographical memory using the sensecam
Human memory is a dynamic system that makes accessible certain memories of events based on a hierarchy of information, arguably driven by personal significance. Not all events are remembered, but those that are tend to be more psychologically relevant. In contrast, lifelogging is the process of automatically recording aspects of one's life in digital form without loss of information. In this article we share our experiences in designing computer-based solutions to assist people review their visual lifelogs and address this contrast. The technical basis for our work is automatically segmenting visual lifelogs into events, allowing event similarity and event importance to be computed, ideas that are motivated by cognitive science considerations of how human memory works and can be assisted. Our work has been based on visual lifelogs gathered by dozens of people, some of them with collections spanning multiple years. In this review article we summarize a series of studies that have led to the development of a browser that is based on human memory systems and discuss the inherent tension in storing large amounts of data but making the most relevant material the most accessible
X-ray Crystallographic Characterization of the Co(II)-substituted Tris-bound Form of the Aminopeptidase from \u3cem\u3eAeromonas proteolytica\u3c/em\u3e
The X-ray crystal structure of the Co(II)-loaded form of the aminopeptidase from Aeromonas proteolytica ([CoCo(AAP)]) was solved to 2.2 Å resolution. [CoCo(AAP)] folds into an α/β globular domain with a twisted β-sheet hydrophobic core sandwiched between α-helices, identical to [ZnZn(AAP)]. Co(II) binding to AAP does not introduce any major conformational changes to the overall protein structure and the amino acid residues ligated to the dicobalt(II) cluster in [CoCo(AAP)] are the same as those in the native Zn(II)-loaded structure with only minor perturbations in bond lengths. The Co(II)–Co(II) distance is 3.3 Å. Tris(hydroxymethyl)aminomethane (Tris) coordinates to the dinuclear Co(II) active site of AAP with one of the Tris hydroxyl oxygen atoms (O4) forming a single oxygen atom bridge between the two Co(II) ions. This is the only Tris atom coordinated to the metals with Co1–O and Co2–O bonds distances of 2.2 and 1.9 Å, respectively. Each of the Co(II) ions resides in a distorted trigonal bipyramidal geometry. This important structure bridges the gap between previous structural and spectroscopic studies performed on AAP and is discussed in this context
MACHe3, a prototype for non-baryonic dark matter search: KeV event detection and multicell correlation
Superfluid He3 at ultra-low temperatures (100 microKelvins) is a sensitive
medium for the bolometric detection of particles. MACHe3 (MAtrix of Cells of
Helium 3) is a project for non-baryonic dark matter search using He3 as a
sensitive medium. Simulations made on a high granularity detector show a very
good rejection to background signals. A multicell prototype including 3
bolometers has been developed to allow correlations between the cells for
background event discrimination. One of the cells contains a low activity Co57
source providing conversion electrons of 7.3 and 13.6 keV to confirm the
detection of low energy events. First results on the multicell prototype are
presented. A detection threshold of 1 keV has been achieved. The detection of
low energy conversion electrons coming from the Co57 source is highlighted as
well as the cosmic muon spectrum measurement. The possibility to reject
background events by using the correlation among the cells is demonstrated from
the simultaneous detection of muons in different cells
- …