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ABSTRACT
1
 

Human memory is a dynamic system which makes accessible certain memories of 

events based on a hierarchy of information, arguably driven by personal significance.  

Not all events are remembered, but those that are tend to be more psychologically 

relevant.  In contrast, lifelogging is the process of automatically recording aspects of 

one‟s life in digital form without loss of information. In this article we share our 

experiences in designing computer-based solutions to assist people review their visual 

lifelogs and address this contrast.  The technical basis for our work is automatically 

segmenting visual lifelogs into events, allowing event similarity and event importance to 

be computed, ideas which are motivated by cognitive science considerations of how 

human memory works and can be assisted. Our work has been based on visual lifelogs 

gathered by dozens of people, some of them with collections spanning multiple years.  In 

this review article we summarize a series of studies that have led to the development of a 

browser which is based on human memory systems, and discuss the inherent tension in 

storing large amounts of data but making the most relevant material the most accessible. 
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1. INTRODUCTION 

If we remembered everything, we should on most occasions be as ill off as if we 

remembered nothing.  

(James, 1890) 

Every piece of information is such that it is very unlikely, but just possible, that it is 

valuable. 

(O‟ Hara, Tuffield, & Shadbolt, 2008) 

Autobiographical memory can be thought of as a store of the important events in our 

lives from which we construct our identity (for a review see Conway, 2005). As an 

example, people form collections of salient memories at times of identity formation, 

grouped around self images (Rathbone, Moulin, & Conway, 2008).  For instance, our self 

image of being a parent will be supported by specific memories of important events such 

as birth, first steps, starting school and so on. The notion of a relationship between 

memory and the self is not new; Bartlett (1932) proposed that memory is not a 

mechanical process but a meaning-making system (see also Kant, 1798; Ribot, 1882).   

Autobiographical memory has clear importance to daily life, personhood and well-

being. Important events are preferentially retained in memory, for example relationships 

(McLean & Thorne, 2003) and events relevant to personal growth (Blagov & Singer, 

2004).  A critical psychological concept in lifelogging is nostalgia (for a review see 

Sedikides et al., 2008).  Nostalgia is the willful accessing of autobiographical memories 

for positive outcomes; it enables continuity between the present self and one‟s personal 

past. A substantial empirical body of literature has shown that nostalgia generates 

positive affect, increases self-esteem, and fosters social connectedness (Wildschut et al., 

2006).  Designing tools to aid such activities should therefore be beneficial for the 

individual and society. Given the aging population, and therefore the increasing number 

of those likely to have a memory impairment (Van Den Broek, Cavallo, & Wehrmann, 

2010), an important challenge for information scientists exists in developing technologies 

to aid autobiographical memory. Disruption to autobiographical memory has grave 

implications for personality (e.g. Addis & Tippet, 2004) and disorders which affect 

selfhood are accompanied by deficits in autobiographical remembering, such as 

depression (e.g. Dalgleish et al., 2007).  

In this review summarizing over 5 years of work and publication, we consider how 

autobiographical memory may be supported through lifelogging, and we report our 

experiences with a device developed primarily for memory prosthesis, the SenseCam.  

Lifelogging refers to the digital capture of a person‟s everyday activities, in an 

unobtrusive and passive fashion.  Apart from a few early visionaries (e.g. Bush, 1945) 

and pioneers (e.g. Mann, 1997) the field of lifelogging is a relatively new area of study. 

Much of the past research has focused on hardware miniaturization and storage (Mann, 

1997; Aizawa, Ishijima, & Shiina, 2001). This has changed in the last 5-10 years with 

advances in storage, sensor and processor technologies leading to new digital recording 
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and retrieval systems that may go beyond the views of the early visionaries (Bell & 

Gemmell, 2007).  In the next 10 years a 250 terabyte hard drive (capable of holding tens 

of thousands of hours of video and tens of millions of photographs) may only cost $600, 

which should be enough to store all of the personal information encountered in an 

individual‟s lifetime. O‟Hara et al. gives a good overview on what motivates us to 

investigate lifelogging activities: 

“… Every piece of information is such that it is very unlikely, but just possible, that it 

is valuable. Before technology allowed comprehensive storage, our strategy was 

usually to try to estimate which information is likely to be more valuable and to keep 

that. Now there is no reason to stick to that philosophy…” (O‟Hara, et al., 2008). 

The encoding specificity principle introduced by Tulving and Thomson (1973) states 

that information is best recalled when the cues present at capture match those that were 

present at encoding. In accordance with this, lifelogging devices that can be used to 

reinstate the visual context of personally experienced events may be best placed to 

support autobiographical memory. The most mature visual lifelogging device is the 

SenseCam, which was developed by Microsoft Research in Cambridge U.K., and is a 

wearable camera worn via a lanyard around the neck (see Figure 1). This device captures 

an image (approximately every 22 seconds) when triggered by sensors which log 

temperature, acceleration, light, and passive infrared data (Hodges, Berry & Wood 2011). 

Unsurprisingly, the images captured using the SenseCam have been shown to operate 

as powerful autobiographical retrieval cues (Berry et al., 2009). However, much memory-

focused lifelogging work has concentrated on those who are cognitively impaired, with 

positive results (e.g. Berry et al., 2009; Pauly-Takacs, Moulin, & Estlin, 2011).  These 

studies focused on rehabilitation, and patients were instructed to wear the camera to 

record personally relevant or novel events; or patients were assessed completing 

experimental tasks, such as following a route. However our work differs in two key ways: 

1) We consider tools to support memory in healthy people; and 2) we consider 

information access to very large, all-day every-day, lifelog collections gathered over 

extended periods of time.  

 

**** FIGURE 1 ABOUT HERE **** 

 

The SenseCam can capture up to 5,000 images and tens of thousands of sensor 

readings (e.g. accelerometer, lighting levels) in a busy day which can result in significant 

data volume. For example, one person who has worn the device on a daily basis has 

produced approximately 7,500,000 images in the last 5 years, each with the associated 

sensor information. As noted by others it is important that any tools facilitating 

navigation within this large collection of images should offer “synergy not substitution” 

of human memories (Sellen & Whittaker, 2010). This contrast between selective 
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encoding in humans and constant recording in the SenseCam places a greater emphasis 

on retrieval processes and the organization of lifelogging materials to be presented to 

SenseCam users.  In terms of human memory, information is often described as 

accessible or available (Tulving & Pearlstone, 1966). Available memory traces are those 

which have been successfully retained.  Some information, for instance is processed at 

the time it occurs but is lost from memory, and is not available.  Other information is 

available but not accessible – at least not until effectively cued or intervened by a 

retrieval strategy.  As an example, the location of your friend‟s birthday celebrations last 

year can be momentarily inaccessible until cued by your friend reminding you that you 

had to wear an evening dress, at which point it becomes accessible.  Extending such ideas 

to SenseCam, our operating principle is that all logged SenseCam images should be 

available, but echoing James above, not all should be accessible. 

Here we summarize our work which has been driven by cognitive psychology 

principles and which have led to the construction of a platform to manage SenseCam 

images through exploiting or reflecting various characteristics of the human memory 

system. The remainder of this article is arranged around three major components of our 

work in providing lifelogging solutions to support human autobiographical memory: 

  1) Event Segmentation: the human mind reproduces memories in terms of events 

as the coherent units with a meaningful focus, thus SenseCam data should also be divided 

into events, where an event in this context refers to a specific activity of the wearer. 

2) Event Association: as the human mind is largely driven by associative structures, 

so also should SenseCam events be easy to find and made accessible. 

3) Event Importance: as distinct events are encoded more strongly in the human 

mind, we attempt to identify such distinct events and make them more accessible. 

We will describe how each of these components has helped us evaluate the role of 

lifelogging in supporting personal recollection. Finally, we conclude with our experiences 

over the past five years, and consider the future challenges that lie ahead in developing 

software tools facilitating easy access to visual lifelog collections. 

 

 

2. HUMAN MEMORY GUIDED COMPONENTS OF LIFELOGGING 

SOLUTIONS 

2.1. Event Segmentation – Storing Images as Events 

Human memory segments a continuously experienced present into a series of discrete 

events at retrieval (Williams, Conway, & Baddeley, 2008; Zacks, 2006). Despite the 

acceptance of this, there is very little experimental data to support theories of event 
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segmentation.  Williams et al. and Zacks both identify personal goals as the important 

drive towards segmenting experiences into events.  For instance, looking back on any one 

day, one might identify an „event‟ as the journey to work.  For this period, the primary 

goal is to arrive at work, and the collection of experiences and sensory information can 

all be related to this key goal. It is easy to determine the termination of the event 

according to the goal: once work has been reached, that goal is achieved, and the 

experiences are driven by a new goal and a new event is formed – for instance, making a 

cup of coffee.  Arguably, events are hierarchical and somewhat driven by retrieval 

processes.  Much more research is needed on event segmentation in human memory, and 

crucially, this is one area where SenseCam could be of great value where rich visual 

datasets available from ordinary daily lives can be used to determine the characteristics 

upon which event segmentation and identification is based. 

 

Event Segmentation Approach 

Analogous to human memory, in lifelogging continuously experienced present (i.e. 

SenseCam images) should be segmented into a series of distinct events for later retrieval. 

An early problem encountered by the visual lifelogging community was in organizing 

and managing the millions of images produced by devices such as the SenseCam. 

Therefore an approach to managing lifelog images is to replicate how human memory 

works by merging clusters of similar images into discrete events (see Figure 2).  This 

concept is not alien to the computing community as the traditional approach to content 

management for large video collections is to subdivide video (essentially a sequence of 

images) into „shots‟ (a grouping of similar images) (Smeaton et al., 2010). 

 

***** Figure 2 about here ***** 

 

***** Figure 3 about here ***** 

  

The aim of automatic event detection from visual lifelogs is to determine boundaries 

that signify a transition between different activities of the wearer, whether visual, 

sensory, or otherwise.  The journey to work, for instance, will create a unique signature 

of accelerometer and temperature data which will cease at the beginning of the next event 

– such as a more sedentary period at one‟s desk.  The processes we formulated to achieve 

event segmentation can be summarized in four steps using only information from the 

SenseCam sensor data (without actually requiring any CPU intensive analysis of the 

images; see Figure 3): 

Compare various adjacent sensor (specifically motion) values against each other 
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to determine how dissimilar they are – higher degrees of dissimilarity indicate higher 

likelihood of a change in activity. Firstly if one is talking to a friend but momentarily 

looks in the opposite direction an event boundary may be falsely triggered, therefore we 

compare aggregated 2-minute blocks of sensor values. As the sensor sources of 

information are all represented by single scalar values it is straightforward to compare 

sensor readings from adjacent readings. To calculate the difference between two 

accelerometer magnitude sensors readings, x and y, the answer is Dl(x, y) = |x − y|. 

Combine the various data sources together in an optimal manner – to verify there 

is agreement across the sensor sources that an activity change may be occurring. After 

comparing adjacent image and sensor values against each other, there will be a separate 

list of difference values for each individual source. The greater the difference value, the 

greater the likelihood that an event boundary has taken place. Before data sources can be 

combined together it must be ensured that they are all on the same scale, using sum 

normalization (Montague & Aslam, 2001) where all values are shifted so that the 

minimum score is zero and the sum of all values summed together is one. Once the data 

sources have been normalized to a common scale, the process of combination, or fusion, 

can be carried out. We empirically determined that the CombMIM (Montague & Aslam, 

2001) fusion approach is most suitable for lifelog event segmentation, where the 

minimum score from all the fused sources is taken, i.e. we only trigger an event boundary 

when the most doubtful source of information thinks an event transition has occurred. 

Determine a threshold value whereby higher dissimilarity values indicate areas 

that are likely to be event boundaries – the magnitude of change required between 

activities must be sufficiently large to stop minor changes being suggested as events, but 

also not be too great where valid activity changes may not be registered. All the previous 

stages gave a likelihood of each instance being an event boundary between sequences of 

images, however no decision was made on which instances should be selected as the final 

event boundaries. We do this by automatically choosing a threshold value. If the 

threshold value is selected too low, there will be a number of false boundaries detected; 

however if the threshold is too high a value, there will be a number of valid boundaries 

undetected. We compared two thresholding techniques, one non-parametric (Kapur) and 

one parametric (Mean) (Sezgin & Sankur, 2004). We found the parametric mean-

thresholding technique most suitable with an F1-measure of 0.6271 vs. 0.5799 for Kapur 

thresholding (Doherty, 2009). In Mean thresholding, the threshold is selected by adding k 

standard deviations to the mean, Tmean = μ + kσ. 

Remove successive event boundaries that occur too close to each other – with the 

minimum event length empirically calculated to be 3 minutes. At certain times some 

events may temporarily be interrupted by various distractions, where those distractions 

may not be long enough to merit being recorded as an autonomous event. Through 

experimentation we found that a gap of 3 minutes was best (Doherty, 2009). This also 

mirrors decisions made in public health behavioral understanding, where only episodes of 

greater than 3 minutes were used for active travel analysis (Kelly, 2011). 

Early approaches to image clustering and segmentation either defined events as being 



Aiding Memory Using the SenseCam 

 

of a fixed duration of time or were adaptations of approaches used to identify scenes in 

video (Wang, Hoffman, Cook, & Li, 2006; Yeung & Yeo, 1996) or stories from normal 

manually captured images. To evaluate the efficiency of our approach we compared it to 

four previous high-performing methods.  These included the Princeton Approach (Wang 

et al, 2006) which segments lifelog videos into clips of fixed duration (5 minutes each); 

Yeung & Yeo‟s time constrained clustering technique; RIAO (Doherty et.al., 2007), an 

early prototype of the proposed event segmentation approach; and lastly we used the 

sensors within the SenseCam to define event boundaries (as just explained). Five 

participants were asked to collect free-living SenseCam images over a period of 1 month, 

with 61 days of valid data being subsequently collected. The participants then manually 

identified the boundaries between all events in their collection. This was achieved by 

having them look at all images for each day in sequence and then selecting where 

relevant transitions took place, using the SenseCam browser of (Hodges et. al., 2006). It 

was stressed to these users to judge event boundaries based on semantic meaning for that 

user personally. In total 2,986 boundaries were manually identified by the participants, 

giving an average of 19.1 events per day. We measured the performance based on 

precision, recall and a F1-Measure on 5 participants‟ SenseCam images with over 61 

days of combined data. The current proposed event segmentation approach represented a 

29.2% F1-measure improvement on prior work in the domain as illustrated in Figure 4.   

 

***** Figure 4 about here ***** 

 

Our event segmentation process typically results in a full day‟s images (almost up to 

5,000) yielding 20-30 events. The importance of the technique just presented means that 

we are using current state-of-art algorithms to present these events to end-users which 

can reduce the potential information overload in comparison to presenting all the images 

in an unclustered manner. Significantly this also structures SenseCam images (a 

continuously experienced present) into a series of discrete events which can then later be 

used at retrieval time. 

 

2.2. Event Association – Associating Similar Events in Memory 

Autobiographical memory relies on the integration of two stores, episodic memory 

and semantic memory.  Episodic memory is event-based memories of specific instances, 

and is often characterized as mental „time travel‟ (it is also re-experienced with a 

sensation of „remembering‟, indicating recollection).  Semantic memory considers 

knowledge and conceptual representations (and does not give rise to the same subjective 

state). Conway and Pleydell-Pearce (2000) suggest that these two stores interact in a 

hierarchical manner in autobiographical memory. Autobiographical memories are 

essentially mental constructions incorporating event-specific episodic information into a 
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factual, conceptual structure, termed semantic memory.  For instance, we organize our 

memories into significant lifetime periods, relationships with others and even locations, 

within such a conceptual framework (e.g. whilst I worked in Bath) we can have specific 

memories (e.g. the time I went to see Midsummer Night‟s Dream).  Since related events 

and specific instances are stored thematically it explains how when retrieving a specific 

memory from a particular lifetime period, other similar events tend come to mind, or are 

more accessible (see also Conway, 1996).  

Based on this cognitive theory there is a clear need for lifelogging systems to provide 

users with automated search functions to find events similar to a given event, e.g. “show 

me other times when I was at the park”. Event association and retrieval in the domain of 

lifelogging has been investigated before, however experiments have been on very small 

datasets confined to just one user. At the most basic level a SenseCam event will consist 

of a number of images. Therefore to retrieve similar SenseCam events to a given event of 

interest in a lifelog it is necessary to firstly determine how to represent SenseCam events, 

and then how to compare those event representations against each other. We now discuss 

how this is achieved. 

 

Event Association Approach 

Firstly an image can be described by its color, edge, and texture properties, in 

addition to a number of other traits. For our work we have used the standard MPEG-7 

global color descriptors of scalable color (64 element vector), edge histogram (80 

element vector), and color layout (12 element vector) (Salembier & Sikora, 2002). On 

average each SenseCam event consists of almost 100 images. Each of those images is 

represented by a combined vector value, however it is desirable to obtain a single vector 

that is representative of the values of all 100 vectors. Smeaton & Browne (2006) note that 

in video retrieval the middle frame is often chosen to represent an entire shot (consisting 

of many images), this image is referred to as the keyframe image. However another 

means of representing an event is to combine multiple event images together into an 

average representative value, which can capture more of the elements of the event as a 

whole. 

Having determined the method to represent each event visually, we then compare 

those event representative vectors against each other. The MPEG-7 features of each 

image (or event representation) are represented as a vector. After investigating 10 vector 

distance metrics (Bray-Curtis, Canberra, Euclidean, Histogram Intersection, Jeffrey 

Modification of Kullback-Leiber, Kullback-Leiber, Manhattan, Square Chi Squared, 

Squared Chord, and X
2
 Statistics) we found it appropriate to use the standard Manhattan 

vector comparison method where dman(x, y) =  


d

i 1

|xi – yi| 

To investigate the optimal approach to facilitate event search, we gathered another 

data collection of 273,744 SenseCam images from 4 participants (information retrieval 
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specialists aged 25-35, wearing SenseCam for 1 month each). 50 events were selected as 

queries, and the users were then asked to judge a large number of potentially relevant 

events against each query event to build up a groundtruth of data. This was done in a 

TRECVid style pooling approach [154], with 43 possible system variations outputting 

their top 100 results for each query. Thereafter each user was presented with single 

keyframe images of all the unique pooled events, and asked to select those events they 

judged to be semantically relevant to the query image. This resulted in a user manually-

defined groundtruth of 17,637 event-similarity-pairs. To have a sufficient number of 

relevant events to train parameters on, it was decided to go for more general queries in 

this dataset e.g. driving, at work on PC, eating, etc. This allowed us empirically 

investigate a number of event representation and event search scenarios. In an ideal world 

for event-event comparisons all images would have their visual features extracted, 

however this is computationally expensive and projecting forward towards the vision of 

ubiquitous lifelogging on the cloud, the scale of images produced (up to 5,000 per person 

per day) would merit an intelligent subset of images in each event. We empirically 

identified that by only extracting MPEG-7 features from the middle 35 images of each 

event (just over 30% of the entire set of images), the retrieval performance, in terms of 

MAP (mean average precision), is within 90% of when image features are extracted from 

all the images within an event. We recommend this approach be taken in future. We also 

found that while processing on sensor sources of information is very quick, image-based 

content information is needed for visual lifelog event search purposes. A disadvantage of 

the event-similarity-pairs dataset is that while it was necessary to select very general 

queries to produce a sufficient number of relevant events on which to tune retrieval 

parameters, these queries are not representative of all possible user query classes. 

Therefore we decided to create a second dataset on which users were asked to construct 

real world queries with very specific information needs. In experiments to investigate the 

effectiveness of our retrieval approaches for real user generated queries on extensive 

datasets, we asked four users to collect SenseCam data over a period of at least one 

month. A total of 1,864,149 SenseCam images were used in this experiment, which were 

automatically segmented into 22,125 events (using approach described in Section 2.1). 

The users identified 23 query events from which they‟d like to find other similar events 

to. We then used the CPU intensive approach of using all images in an event to compare 

event-representative vectors. Unfortunately while retrieval performance was encouraging 

in the event-similarity-pairs dataset of generic queries (% of top 5 ranked results which 

are relevant, P@5 = 0.69), the performance on the 23 specific queries on the larger 

dataset is insufficient (P@5 = 0.30). To verify that those results were using state-of-art 

multimedia retrieval techniques, we compared our global color based-approach just 

mentioned to methods for extracting interest point features from images using SIFT 

[Scale Invariant Feature Transform, (Lowe, 2004)] and SURF [Speeded Up Robust 

Features, (Bay et al., 2006)] techniques. Figure 5 illustrates that our algorithm is at least 

as comparable, thus meaning that a significant challenge remains for the community to 

improve the performance of specific user queries of interest. 

Previously the dominant presentation paradigm for reviewing lifelog images was a 

conventional sequential “replay” or fast-forwarding of all captured images, more 
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formally known as RSVP (Spence, 2002). Other early visualization methods included 

integration with GPS devices (Bell, Gemmell, & Gates, 2010). Through the process of 

event segmentation, and event comparison we introduced visual search functionality for 

end-users to browse through their lifelog collections (Lee et al., 2008). This functionality 

can support the association of events with each other. In theory this computational 

semantic association may complement human episodic memory. For example if images 

exist of playing in the snow, other similar existing events can automatically be associated 

with this, using the event representative MPEG-7 vectors and distance comparison 

techniques just mentioned. However given the current poor performance of the state-of-

art in automatically identifying specific queries of interest (P@5=0.30), there remains 

two challenges to the community: 1) Improving automatic event association performance; 

2) Developing user-conscious semi-automatic query functionality.  

 

***** Figure 5 about here ***** 

 

2.3. Event Importance – Considering Self Issues 

An explanation for the poor performance on specific queries of interest is that there is 

simply a smaller pool of relevant events that can be found, rather than the greater 

likelihood of retrieving more routine events. Another reason is due to the computational 

challenge which exists in automatically assigning semantic meaning or significance to 

images which are essentially stored as color pixels. This is the long-identified „semantic 

gap‟ where computers fail to translate bytes into real semantic meaning (Smeulders et al., 

2000). Attempting to determine the „meaning‟ or „significance‟ of an event is a subjective 

exercise.  In this case, our attempt to consider meaning in memory is to examine what 

gets preferentially stored, and therefore what is relevant to the self.  In doing so, we 

focused on two factors: face detection (as a proxy for social importance) and 

distinctiveness.  

 In the nostalgia literature, social events and significant relationships feature 

predominantly as personally relevant autobiographical memories (Wildschut et al., 2006). 

Early efforts in the lifelogging domain followed this principle where social interaction 

and conversational scenes were regarded as key elements in determining event 

importance. To detect these, automatic face detection was used to determine events 

containing face-to-face conversations. Within each event all images are firstly processed 

to investigate whether a face is present or not using the Intel OpenCV face detection 

toolkit (haarcascade-frontalface-alt, scaling factor of 1.1, 3 neighbors, and window size 

of 30 pixels). Thereafter each event is given a face concentration score, with the count of 

all images with >=1 faces present being divided by the total number of images in the 

event. 

In recognition memory tasks using experimentally controlled sets of words or 
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pictures, participants are better able to detect distinctive items (e.g. Mandler, 1980).  

Distinctiveness is often encountered with reference to novelty, in that novel events are 

more distinctive.  It is widely assumed that novelty is a major trigger for orientating 

attention to a stimulus in the environment, and that this novelty engages memory 

encoding mechanisms (e.g. Grunwald & Kurthen, 2006). Distinctiveness is also a critical 

issue in autobiographical memory (Brewer, 1988). Research has considered which events 

from across the lifespan are better remembered.  If we plot the accessibility of memories 

across the lifespan, a robust phenomenon called the reminiscence bump is produced.  

This is a period in life, typically between the ages of 15 and 25, where a great amount of 

memories are produced (e.g. Rubin, Wetzler, & Nebes, 1986).  There are various 

accounts of this phenomenon, but one suggestion is that it is driven by distinctive, 

important, self-defining first-time experiences; for instance, embarking on a career, 

meeting a life partner, achieving academic qualifications, and so on. Extreme cases of 

distinctiveness concern „flashbulb memories‟ (e.g. Brown & Kulik, 1977).  These are 

events which are sufficiently distinctive so as to produce extremely vivid memory of the 

circumstances of an event.  Typically, these are memories of public events, such as the 

attack on the World Trade Center of 2001. In such instances, it appears that 

distinctiveness serves to make the memory of hearing this news very memorable, even 

after long periods and in neurodegenerative conditions.  Arguably, these events are of 

personal and public significance and this drives the superior memory for them. 

Considering that more distinctive events are better remembered in human memory, it 

follows that a browser should be able to present events to the user that are more 

interesting on the basis of their distinctiveness. For human memory to be supported by 

lifelogging systems, those events that are likely to be better remembered by an individual 

should be automatically identified. As a case of further motivation, consider that a user 

will on average capture over 7,000 events per year (assuming approximately the lower-

case scenario of 20 events per day), automatically summarizing the collection to the more 

interesting events will support the user reflect upon their experiences. 

 

Event Importance Approach 

Given we have just motivated that distinct events are more strongly remembered, in 

2008 we extended previous lifelogging efforts by introducing the notion of event novelty 

whereby visually distinct or outlier events are likely to be more distinctly and strongly 

remembered. Firstly MPEG-7 image descriptors are extracted from the middle 35 images 

from each event (same as used in Section 2.2), and thereafter the event‟s novelty score is 

the sum of its Manhattan distance metric against all relevant comparison events, divided 

by the count of those comparison events. Less frequently occurring (i.e. more novel) 

events will have higher distance metric scores in comparison to routinely occurring ones 

which will have lower similarity scores. We empirically found the most appropriate set of 

events on which to compare a given SenseCam event to, were all events that occurred +- 

2 hours on the same day of the week in the entire history of the dataset. The premise for 

this is to highlight, for instance, a family meal out in a nice restaurant on a Thursday 



Aiding Memory Using the SenseCam 

 

evening rather than the normal evening meal at home. 

 

***** Figure 6 about here ***** 

 

Due to lifelogging technologies only recently becoming more easily available, three 

years ago we were not in a position to carry out life-duration experiments, so we firstly 

evaluated the effectiveness of our event importance approach on ranking the importance 

of events within a day. Three information retrieval specialist users (aged 20-35) wore the 

SenseCam for one month each (total of 176,975 images segmented into 1,758 events). As 

there is a subjective nature of rating how important an event is in relation to other events, 

it is very difficult to rank the importance of all events within a day, and to do this for each 

and every day would present a large annotation burden on users. Therefore given that it is 

of much interest to determine the most interesting events in a given day, in addition to 

determining the most mundane/routine events from a day, a decision was made to present 

keyframe images of all the day‟s events, and then the two most important and two least 

important (as determined by the approach under investigation) events to the user 

(Doherty, 2009, pp. 172). Users were then asked to give a single Likert judgment on how 

much they agree with the proposed most and least important events as a summarization of 

that day. Future investigations in this area could look at analyzing the most and least 

important events separately, and then the interaction between them. However this 

analysis was not the aim of our experimental design at the time. After 664 judgments 

made by our users, we found the most effective approach is in combining the automated 

detection of faces (to indicate social engagement) with detecting how visually novel each 

event is. To obtain the novelty score, each event in a day is automatically visually 

compared (via distance metrics between event representative MPEG-7 vectors) to see 

how dissimilar it is to other events occurring +/- 2 hours in previous same weekdays. 

Figure 6 displays the success (in terms of typical Likert ratings on a scale of 1-5) each of 

the systems had in identifying events of interest that closely matched those defined by 

each user. 

In summary we have identified that the human mind groups together continuous 

material into discrete events, that those events have various degrees of association with 

past events, and the most distinct events are easiest to retrieve. As described, 

computational processes have been developed to mimic those functions of human 

memory. The meaning of this is that lifelogging solutions understanding how the human 

mind is likely to operate, should in theory be well placed to support autobiographical 

functioning and personal recollection.  
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3. PERSONAL RECOLLECTION – HOW APPROPRIATELY 

DESIGNED LIFELOGGING TOOLS CAN ASSIST 

Brewer (1988) was the first to scientifically investigate „personal recollection‟, where 

diary methods were used to try and gauge what people could retrieve from daily life over 

very short sections of the lifespan.  Visual lifelogging has since opened up new 

possibilities to carry out more ambitious studies in this field, where it is now possible to 

carry out personal recollection experiments on very large lifelog collections. For example 

Sellen et al. (2007), has shed light on how SenseCam interacts with different forms of 

human memory. In their study, participants were asked to classify their subjective 

experience on recalled events from SenseCam days (when they wore SenseCam) and 

control days (when they did not wear SenseCam) as remembered (reflecting episodic 

memory) or simply known (reflecting semantic memory). The key issue in studies of this 

type is that participants can reliably differentiate memories which are „remembered‟ from 

which are „known‟ (e.g. Conway, 2005). Firstly, it was found that reviewing SenseCam 

images gave rise to higher recall in both types of memories than did control images. 

Recall in this study was measured over two minutes by asking the participants to write 

prose cued by the questions „what‟, „where‟, „when‟, and „who‟ for each event. 

Furthermore, whereas SenseCam-cued remembered events gradually became more and 

more difficult to recall over time, SenseCam-cued known events showed greater stability. 

This suggests that if details of a SenseCam-recorded event are no longer available for 

conscious recollection due to general forgetting effects, the knowledge of having 

experienced that event will still be available. Contrastingly, known events of control days 

(no SenseCam) did significantly decline over time, which confirms the role of the device 

in the long-term retention of knowing that an event did occur in one's past. However, in 

this study participants only wore the SenseCam for a very short time-period of two 

weeks. In this article we consider the scenario of interacting with a lifelog collection of 

years in duration, and how software tools can assist personal recollection in such a 

scenario.  

Inspired by studies of recollection in the laboratory which ask participants to report 

their experience according to a number of basic questions (who, where, what; Perfect et 

al., 1996) we designed a new lifelogging browser to acknowledge that there are multiple 

sensory routes on which events can be associated. This led to the construction of a 

system, illustrated in Figure 7, where the user could query by the following search axes: 

where (location, altitude, temperature); when (calendar selection, prev/next day browsing, 

season, year, day/night, time of day, & month);  what (visual appearance, bright/dark, 

important/routine, semantic concepts (Doherty et al., 2011) e.g. eating, working on PC, 

etc.); and who (estimated number of people in scene based on face detection).We now 

briefly share our thoughts on what event association strategies may best support personal 

recollection based on a single case, a permanent SenseCam wearer 34-year-old male 

(Moulin et al., in prep). Given the prior lack of availability of lifelogging devices it has 

only been possible to gather a multiyear data collection from one committed individual 

willing to share his images (author CG). Ideally, a full group study would be conducted, 

but we had a unique opportunity to research his then 2.5 million (now 7.5 million) image 
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multi-year lifelog data collection, in a single case design. Our view was that CG 

presented to us a „natural experiment‟ in the same way that special cases of brain injury 

We feel that the lessons learned from the experiences working with this one user can help 

inform the community on future directions for when lifelogging becomes mainstream. 

Our volunteer participant - CG, a computer scientist by profession - had gathered a 

collection of 2,579,455 SenseCam images over a time period of 2.5 years. Our event 

segmentation (Section 2.1) divided these images into 29,301 events. Event importance 

technology (Section 2.3) then allowed the selection of potentially interesting events from 

this collection of distinct events. Using the lifelog browsing system displayed in Figure 7, 

our case study concentrated on 1) how successfully the system could identify events of 

personal importance to the user; and 2) how the system could support the user to find 

events of interest. CG generated his 50 specific events from the 2.5 year time period that 

he had been wearing SenseCam. These 50 events were obtained employing a version of 

an autobiographical fluency task (e.g. Dritschel et al., 1992), whereby CG freely 

generated as many memories as he could as quickly as possible, no instruction was given 

about time period, topic, or personal significance.  He gave titles and dated each memory 

as it came to mind, and then moved onto retrieving the next. Once all 50 events were 

retrieved, he then rated the novelty and personal importance of events on a scale from 1 

to 7. CG was able to retrieve the 50 events without much difficulty such that the task took 

approximately half an hour to complete. 

CG‟s set of memories allowed us to investigate the success of the lifelog system‟s 

event importance module in identifying the 50 most interesting events from the 

participant‟s 29,301 events. To enable this, CG also rated the novelty and personal 

importance of the lifelog system‟s 50 most important events, plus an additional 50 

randomly selected control events.  The mean ratings for these events were submitted to 

analysis of variance.  There was an effect of event type (CG-generated events versus 

lifelog‟s important events versus random events) for both novelty and personal 

importance, F(2, 151) = 38.8, p<.001 and F(2, 151) = 20.5, p<.001., respectively, such 

that each event type was significantly different from each other (all at p < .01). More 

specifically, CG rated his self-generated memories as being the most novel and 

personally significant events, but the lifelog system‟s events were rated significantly 

more novel and personally important than the random (control) generated events.  

 

***** Figure 7 about here ***** 

 

Typically, CG‟s highest ratings were given to family events (e.g. wedding), to events 

pertaining relationships (e.g. meeting girlfriend), and to events signifying a change in 

lifestyle (e.g. buying a car or a new home). The outcome is that the lifelog system 

generated items which were significantly more novel and personally significant than a 

control set of random events, but which did not choose events as novel or as personal 

significant (as rated by the user).  Such a method could be taken forward as a way of 
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examining the relationship between computer-generated important events and those 

which are subjectively the most important. 

Despite some success in making automatically accessible novel and significant 

events, perhaps it is expecting too much of a lifelog system to know which events to 

make the most accessible with complete overlap.  A more modest aim would be to have a 

lifelog system where the subjectively important and novel events were at least easily 

accessible.  To this end, approximately 6 months after our initial testing on CG, we asked 

him to find his 50 self-identified events in the system, and recorded his personal 

reflection of those events. Two systems were designed to help CG retrieve these 50 

events, the first being retrieved using our old lifelog browser, which only offers time (via 

calendar) and visual similarity (via side panel) based search, (Doherty, Moulin, & 

Smeaton, 2011), and the second being retrieved using the lifelog browser in Figure 7; The 

browsers cannot be compared on the same set of queries since learning effects would 

influence the results.  The data suggests that our lifelog browser aided our participant to 

retrieve his 50 most interesting events with the median search time of 127 seconds (38 

events retrieved) on the collection of 29,301 events, as opposed to 774 seconds (12 events 

retrieved) using the older lifelog browser. After just 12 queries it was clearly obvious that 

the old browser was ineffective, so we therefore searched the remaining queries using the 

lifelog browser described in this article. Offering people multiple sensory paths on which 

to access their lifelog collection suggests early promise, but merits further investigation.  

 

4. CONCLUSIONS AND REFLECTIONS – WHERE NEXT 

We have reflected on various instances of how biomimicry of the human 

autobiographical memory system has resulted in significant gains achieved in lifelogging 

systems. Over the past five years we have carried out dozens of experiments on 

approximately 15 million SenseCam images captured by over 40 different participants. 

We now conclude by reflecting on our past experience, and look forward to future 

research directions the lifelogging community should take to support healthy individuals 

in reviewing captured visual records. 

 

Reflecting on the Past Five Years 

A perception has existed that the field of lifelogging has been overly focused on 

recording the minutiae of everyday life, but without making the data meaningful to end 

users (Sellen & Whittaker, 2010). However our experience of working with real-world 

users has been that by capturing as much data as possible, we can better direct the wearer 

towards significant moments in their lives, i.e. the redundancy of everyday mundane 

events assists in identifying the outlier and more memorable events. In essence, capturing 

everything does not mean that we must review everything, indeed forgetting is very 

important, but capturing as much as possible creates the best environment to guide us 
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towards those everyday moments that are significant in our lives. We believe that the 

tools developed from our experiences (e.g. http://sensecambrowser.codeplex.com) will 

support the personal memories community design better reflection and interaction 

methods (e.g. Petrelli et al., 2009). 

The sensor sources of information are valuable to assist the computational processing 

of event segmentation, but for event search the images are still most powerful to induce 

the recollective experience (also recognized by Kalnikaitė et al., 2010). We have also 

learned that it is not necessary to strictly define boundaries between events, as the events 

act as a quick navigation towards the images of interest. This exploits the human 

capabilities of gisting or inferring what an event was about, and also inferring the 

temporal ordering of autobiographical events (Brainerd & Reyna, 2001; Koriat, 

Goldsmith, & Panksy, 2000) 

On an individual's lifelog of 2.5 years, anecdotal evidence indicates that the average 

time to find an event (among the nearly 30,000 present) has been reduced from 774 

seconds when browsing to 127 seconds when presenting the user with multiple sensory 

paths. However 127 seconds to find a target event is not acceptable to users who would 

naturally expect prompt access to relevant information from their lifelog. This still 

represents the single greatest challenge for our community. 

 

Looking Forward to the Future 

The commercial release of the SenseCam, via the branding of the Vicon Revue, is 

important in creating availability of equipment, which will enable studies to be carried 

out on larger and more diverse populations. Hardware no longer poses a significant issue, 

and neither do storage and processing (Doherty, Moulin, & Smeaton, 2011). The next 

computational/technology challenge lies in semantic interpretation and search. This is a 

process which requires the guidance of psychological principles and an understanding of 

what motivates self-driven goals. This fundamental search work will provide the platform 

for the next generation of digital personal memory reflection tools, just as the past five 

years have driven a suite of studies. 

In the video retrieval domain benchmarking exercises have been instrumental in 

extending the state-of-art performance (Thornley et al., 2011). However given the early 

stage of research in the lifelogging domain, and some initial concern surrounding the 

sharing of participants‟ automatically captured lifelog images of non-consenting 

individuals (Allen, 2007), there has been no benchmarking dataset made available yet.  

For the search performance to significantly improve, a common dataset on which to carry 

out benchmarking exercises will be essential, notwithstanding the challenges of 

generating a suitable dataset given the personal nature of the data. 

Given the role that lifelogging could have on society, the lifelogging community 

should involve „reflectors‟ from the arts and humanities throughout the process of 
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technological advancement. Such stakeholders could play an integral role in ensuring that 

the potential technological benefits of lifelogging sufficiently outweigh the perceived 

sociological implications (Allen, 2007). The anticipated benefits include scenarios of 

social sharing of experienced events or happenings as recorded using lifelogging 

technologies, supporting human memory, preserving the experiences of a loved one long 

after their passing away, and many more. Given that potential implications of lifelogging 

technologies could include breaches of privacy of the individual, issues of control of 

content, regulation governing ownership of lifelog data after death, laws regarding forced 

sharing of lifelog data to resolve legal disputes, etc. These concerns should be addressed. 

Although the benefit of lifelogging technologies such as SenseCam are emphasised in 

people with memory difficulties, we feel users (particularly older users) would be more 

likely to adopt lifelogging technologies to support their memory if they have previous 

experience using them prior to their impairment. Therefore it may be necessary to design 

a lifelogging application that older adults would be motivated to use. Some motivational 

factors could include: integration of information that older adults are already interested 

in; emphasising family collaboration in lifelogging; and supporting storytelling and 

reminiscence. 

Finally, lifelogging issues a challenge to the memory community. Given that the 

nostalgia literature (e.g. Wildschut, et al., 2006) shows that there is a benefit to wellbeing 

and mood by freely retrieving memories from the past, what will the effect be when 

memory is supported through lifelogging? This can only be answered with a longitudinal 

study where enough of one‟s lifespan has elapsed in the lifelog to emulate the long-term 

recollections of important events seen in the reminiscence bump. 

 

In Summary 

We began this paper by outlining two quotes which sum up what we feel are the 

central issues for the lifelogging community, the psychological redundancy of 

remembering everything contrasting with the technological ability to store everything.  

Even though O‟Hara et al.‟s (2008) comment is quite recent, the sentiment has long been 

a driving force of lifelogging efforts. However only five years ago the comments of 

James (1890) were viewed as most practical by the wider community. Through a process 

of biomimicry of the human memory system and then developing technologies to 

complement autobiographical memory we feel that the wider view is now shifting 

towards O‟Hara et al.‟s comments. It is our aspiration that future lifelogging efforts set up 

rigorous experiments to conclusively answer this debate, somewhat analogous to the 

effect the TRECVid benchmarking exercise has had on video search advancements 

(Thornley et al., 2011).  To refer back to the literature, we are in a position where all 

material in lifelogs should be available, but our browsers and retrieval systems should 

consider how to make accessible information which is easy to search, relevant, and 

perhaps most critically, be of personal significance. 
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FIGURE CAPTIONS 

Figure 1. The Microsoft SenseCam digital camera 

Figure 2. Segmenting SenseCam images is analogous to how human memories 

stores continuously experienced material as discrete events  

Figure 3.  Overview of process to identify transitions between lifestyle events from 

SenseCam data, using the sensor sources only 

Figure 4.  Performance in identifying boundaries between lifelog events. The x-axis 

sorted in descending order of performance of our “Sensors Only” 

approach represents 61 discrete days from 5 individuals, and the y-axis 

represents the event-segmentation F1-measure accuracy obtained for 

each of those 61 days. Our method in the thick black line represents an 

improvement over existing techniques 

Figure 5.  A summary of the MAP (mean average precision) performance of our 

approach (MPEG7Sense) in comparison to using elementary SIFT and 

SURF interest feature comparisons on 23 queries of specific interest to 4 

users 

Figure 6.  Identifying events that are likely to be more distinctly encoded in the 

autobiographical memory system 

Figure 7.  Visual lifelogging “multi-axes” browser developed in 2010. The primary 

design goal was to provide multi-faceted retrieval of events to support 

person recollection. This browser aims to support search on the “who”, 

“what”, “when” and “where” axes of retrieval 
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Figure 2. Segmenting SenseCam images is analogous to how human memories stores 

continuously experienced material as discrete events 
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  Figure 3.  Overview of process to identify transitions between lifestyle events from 

SenseCam data, using the sensor sources only 
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Figure 4.  Performance in identifying boundaries between lifelog events. The x-axis 

sorted in descending order of performance of our “Sensors Only” approach 

represents 61 discrete days from 5 individuals, and the y-axis represents the 

event-segmentation F1-measure accuracy obtained for each of those 61 days. 

Our method in the thick black line represents an improvement over existing 

techniques 
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Figure 5.  A summary of the MAP (mean average precision) performance of our 

approach (MPEG7Sense) in comparison to using elementary SIFT and 

SURF interest feature comparisons on 23 queries of specific interest to 4 

users 
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Figure 6.  Identifying events that are likely to be more distinctly encoded in the 

autobiographical memory system 
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Figure 7.  Visual lifelogging “multi-axes” browser developed in 2010. The primary 

design goal was to provide multi-faceted retrieval of events to support person 

recollection. This browser aims to support search on the “who”, “what”, 

“when” and “where” axes of retrieval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


