400 research outputs found

    A PROBIT MODEL ANALYSIS OF FACTORS AFFECTING CONSUMPTION OF FRESH SWEET CORN IN MAJOR U.S. MARKETS

    Get PDF
    In an effort to more effectively utilize its resources to promote fresh sweet corn, the Fresh Supersweet Corn Council contracted with the Florida Agricultural Market Research Center (FAMRC) of the University of Florida to conduct a comprehensive consumer survey. The consumer survey was designed to investigate consumer preferences, attitudes, and behavior regarding the purchase and consumption of fresh sweet corn. A total of 1,031 consumer telephone interviews were conducted in Dallas, Atlanta, Chicago, Boston and Philadelphia between September 7 and November 3, 2001. Respondents' revealed very limited consumption in the winter, spring, and fall seasons and consumers' perceptions that sweet corn is not available in these seasons. Probit models are estimated to determine effects of seasonalityConsumer/Household Economics,

    EGFR isoforms and gene regulation in human endometrial cancer cells

    Get PDF
    BACKGROUND: Epidermal growth factor (EGF) and its receptor (EGFR) constitute a principal growth-promoting pathway in endometrial cancer cells. Pre-clinical studies were undertaken to compare the expression of EGFR isoforms and the downstream effects of activating or blocking EGFR function in Ishikawa H cells, derived from a moderately differentiated type I endometrioid adenocarcinoma, or in Hec50co cells, derived from a poorly differentiated type II adenocarcinoma with papillary serous sub-differentiation. RESULTS: We investigated whether EGFR mutations are present in the tyrosine kinase domain (exons 18-22) of EGFR and also whether EGFR isoforms are expressed in the Ishikawa H or Hec50co cell lines. Sequence of the EGFR tyrosine kinase domain proved to be wild type in both cell lines. While both cell lines expressed full-length EGFR (isoform A), EGFR and sEGFR (isoform D) were expressed at significantly lower levels in Hec50co cells compared to Ishikawa H cells. Analysis of gene expression following EGF vs. gefitinib treatment (a small molecule EGFR tyrosine kinase inhibitor) was performed. Early growth response 1, sphingosine kinase 2, dual specificity phosphatase 6, and glucocorticoid receptor DNA binding factor 1 are members of a cluster of genes downstream of EGFR that are differentially regulated by treatment with EGF compared to gefitinib in Ishikawa H cells, but not in Hec50co cells. CONCLUSIONS: Type I Ishikawa H and type II Hec50co endometrial carcinoma cells both express EGFR and sEGFR, but differ markedly in their responsiveness to the EGFR inhibitor gefitinib. This difference is paralleled by differences in the expression of sEGFR and EGFR, as well as in their transcriptional response following treatment with either EGF or gefitinib. The small cluster of differently regulated genes reported here in these type I vs. type II endometrial cancer-derived cell lines may identify candidate biomarkers useful for predicting sensitivity to EGFR blockade

    CubeSat Reusable Interface Software Platform (CRISP): A Lightweight Message-Bus-Based Flight Software Architecture for Rapid Payload Integration

    Get PDF
    The Agile Space portfolio of projects at Los Alamos National Laboratory (LANL) develops low-cost, rapidly-deployable space payloads and systems. To increase the agility of future missions, we are developing CRISP: the CubeSat Reusable Interface Software Platform. CRISP provides a lightweight and reusable flight software framework for rapid integration of custom payloads with commercial microsatellite platforms. CRISP cuts development time and costs by reducing non-recurring engineering (NRE); thereby accelerating mission agility. To achieve these goals, CRISP provides a core set of payload/data management functions and abstracts the interface between the bus avionics and the payload(s). CRISP currently consists of the following core software modules: a lightweight and scalable publish-subscribe message bus, a space vehicle interface, volatile and nonvolatile memory management, time and ephemeris distribution, debug printing and logging, and watchdogs. We have also developed a modular ground support utility to ease integration and testing, as well as a template flight software application that can be quickly adapted to new missions. Two upcoming CubeSat missions at LANL have already adopted CRISP: the Experiment for Space Radiation Analysis (ESRA) and the Mini Astrophysical MeV Background Observatory (MAMBO)

    GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models.

    Get PDF
    NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments

    Metabolic Control by S6 Kinases Depends on Dietary Lipids

    Get PDF
    Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko) with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism

    The FLASH pilot survey: an HI absorption search against MRC 1-Jy radio sources

    Full text link
    We report an ASKAP search for associated HI 21-cm absorption against bright radio sources from the Molonglo Reference Catalogue (MRC) 1-Jy sample. The search uses pilot survey data from the ASKAP First Large Absorption Survey in \hi (FLASH) covering the redshift range 0.42<z<1.000.42 < z < 1.00. From a sample of 62 MRC 1-Jy radio galaxies and quasars in this redshift range we report three new detections of associated HI 21-cm absorption, yielding an overall detection fraction of 1.8%1.5%+4.0%1.8\%^{+4.0\%}_{-1.5\%}. The detected systems comprise two radio galaxies (MRC 2216-281 at z=0.657z=0.657 and MRC 0531-237 at z=0.851z=0.851) and one quasar (MRC 2156-245 at z=0.862z=0.862). The MRC 0531-237 absorption system is the strongest found to date, with a velocity integrated optical depth of 143.8±0.4 km s1\rm 143.8 \pm 0.4 \ km \ s^{-1}. All three objects with detected HI 21-cm absorption are peaked-spectrum or compact steep-spectrum (CSS) radio sources, classified based on our SED fits to the spectra. Two of them show strong interplanetary scintillation at 162 MHz, implying that the radio continuum source is smaller than 1 arcsec in size even at low frequencies. Among the class of peaked-spectrum and compact steep-spectrum radio sources, the HI detection fraction is 23%13%+22%23\%^{+22\%}_{-13\%}. This is consistent within 1σ1\sigma with a detection fraction of 42%15%+21%\approx 42\%^{+21\%}_{-15\%} in earlier reported GPS and CSS samples at intermediate redshifts (0.4<z<1.00.4 < z < 1.0). All three detections have a high 1.4 GHz radio luminosity, with MRC 0531-237 and MRC 2216-281 having the highest values in the sample, >27.5 W Hz1\rm > 27.5 \ W \ Hz^{-1}. The preponderance of extended radio sources in our sample could partially explain the overall low detection fraction, while the effects of a redshift evolution in gas properties and AGN UV luminosity on the neutral gas absorption still need to be investigated.Comment: 28 pages, 9 figures and 7 Tables. Submitted to MNRA

    A molecular genetic study of autism and related phenotypes in extended pedigrees

    Get PDF
    Abstract: Background: Efforts to uncover the risk genotypes associated with the familial nature of autism spectrum disorder (ASD) have had limited success. The study of extended pedigrees, incorporating additional ASD-related phenotypes into linkage analysis, offers an alternative approach to the search for inherited ASD susceptibility variants that complements traditional methods used to study the genetics of ASD. Methods: We examined evidence for linkage in 19 extended pedigrees ascertained through ASD cases spread across at least two (and in most cases three) nuclear families. Both compound phenotypes (i.e., ASD and, in non-ASD individuals, the broad autism phenotype) and more narrowly defined components of these phenotypes, e.g., social and repetitive behavior, pragmatic language, and anxiety, were examined. The overarching goal was to maximize the aggregate information available on the maximum number of individuals and to disaggregate syndromic phenotypes in order to examine the genetic underpinnings of more narrowly defined aspects of ASD behavior. Results: Results reveal substantial between-family locus heterogeneity and support the importance of previously reported ASD loci in inherited, familial, forms of ASD. Additional loci, not seen in the ASD analyses, show evidence for linkage to the broad autism phenotype (BAP). BAP peaks are well supported by multiple subphenotypes (including anxiety, pragmatic language, and social behavior) showing linkage to regions overlapping with the compound BAP phenotype. Whereas ‘repetitive behavior’, showing the strongest evidence for linkage (Posterior Probability of Linkage = 62% at 6p25.2-24.3, and 69% at 19p13.3), appears to be linked to novel regions not detected with other compound or narrow phenotypes examined in this study. Conclusions: These results provide support for the presence of key features underlying the complexity of the genetic architecture of ASD: substantial between-family locus heterogeneity, that the BAP appears to correspond to sets of subclinical features segregating with ASD within pedigrees, and that different features of the ASD phenotype segregate independently of one another. These findings support the additional study of larger, even more individually informative pedigrees, together with measurement of multiple, behavioral- and biomarker-based phenotypes, in both affected and non-affected individuals, to elucidate the complex genetics of familial ASD

    Cryptic Eimeria genotypes are common across the southern but not northern hemisphere

    Get PDF
    The phylum Apicomplexa includes parasites of medical, zoonotic and veterinary significance. Understanding the global distribution and genetic diversity of these protozoa is of fundamental importance for efficient, robust and long-lasting methods of control. Eimeria spp. cause intestinal coccidiosis in all major livestock animals and are the most important parasites of domestic chickens in terms of both economic impact and animal welfare. Despite having significant negative impacts on the efficiency of food production, many fundamental questions relating to the global distribution and genetic variation of Eimeria spp. remain largely unanswered. Here, we provide the broadest map yet of Eimeria occurrence for domestic chickens, confirming that all the known species (Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox, Eimeria tenella) are present in all six continents where chickens are found (including 21 countries). Analysis of 248 internal transcribed spacer sequences derived from 17 countries provided evidence of possible allopatric diversity for species such as E. tenella (FST values ⩽0.34) but not E. acervulina and E. mitis, and highlighted a trend towards widespread genetic variance. We found that three genetic variants described previously only in Australia and southern Africa (operational taxonomic units x, y and z) have a wide distribution across the southern, but not the northern hemisphere. While the drivers for such a polarised distribution of these operational taxonomic unit genotypes remains unclear, the occurrence of genetically variant Eimeria may pose a risk to food security and animal welfare in Europe and North America should these parasites spread to the northern hemisphere
    corecore