
Scobie et al. 1 36th Annual Small Satellite Conference

SSC22-P2-29

CubeSat Reusable Interface Software Platform (CRISP): A Lightweight Message-Bus-

Based Flight Software Architecture for Rapid Payload Integration

Rory H. Scobie1, Kevin D. Kaufeld1, Bradley J. Hoose1, Keith S. Morgan1, Kimberly K. Katko2, Markus P. Hehlen2,

John M. Michel1
Los Alamos National Laboratory, 1 Space Data Science & Systems (ISR-3), 2 Space & Remote Sensing (ISR-2)

Los Alamos, NM 87545; 505 606 2054
rscobie@lanl.gov

ABSTRACT

The Agile Space portfolio of projects at Los Alamos National Laboratory (LANL) develops low-cost, rapidly-
deployable space payloads and systems. To increase the agility of future missions, we are developing CRISP: the

CubeSat Reusable Interface Software Platform. CRISP provides a lightweight and reusable flight software framework
for rapid integration of custom payloads with commercial microsatellite platforms. CRISP cuts development time and
costs by reducing non-recurring engineering (NRE); thereby accelerating mission agility. To achieve these goals,

CRISP provides a core set of payload/data management functions and abstracts the interface between the bus avionics
and the payload(s). CRISP currently consists of the following core software modules: a lightweight and scalable
publish-subscribe message bus, a space vehicle interface, volatile and nonvolatile memory management, time and

ephemeris distribution, debug printing and logging, and watchdogs. We have also developed a modular ground support
utility to ease integration and testing, as well as a template flight software application that can be quickly adapted to

new missions. Two upcoming CubeSat missions at LANL have already adopted CRISP: the Experiment for Space

Radiation Analysis (ESRA) and the Mini Astrophysical MeV Background Observatory (MAMBO).

BACKGROUND

Traditional space missions are typically characterized by

a low risk tolerance and the associated high cost and long
schedules. The Agile Space portfolio of projects at Los

Alamos National Laboratory (LANL) aims to create a
capability that enables higher-risk missions to be
executed at lower cost and on shorter timelines. This

opens the door to a range of new missions for science,
technology demonstration, and constellations.
Additionally, increased agility allows for faster response

to emerging national and global security threats.1

A core element of LANL’s approach to Agile Space is a
mission-agnostic technical and logistical framework that
leverages commercial technology and establishes

standardized hardware, software, and workflows (Figure
1). This reduces Non-Recurring Engineering (NRE), a

major cost and schedule driver, and builds flight
heritage. As a result, the primary mission risk is properly

focused on the typically novel state-of-the-art payload.

One key component of this approach is CRISP: the

Cubsat Reusable Interface Software Platform. CRISP
enables the payload processor to become a standardized,
reusable, and highly-functional broker between the

mission-specific payload and the commercial host bus

avionics (Figure 2).

Figure 1: Envisioned LANL Agile Space capability

that revolutionizes the time and resources needed to
produce actionable information for a given mission
need. Mission-specific aspects (red), commercial

technology (blue), and standardized workflows

(green) are shown.

We evaluated a variety of existing small-satellite
software platforms that could potentially offer the

desired functionality. NASA’s Core Flight System
(cFS)2 framework and Xplore’s KubOS3 both employ a
publish-subscribe architecture; however, they both

impose a significant level of overhead that was not
compatible with our need for a low-resource lightweight

Scobie et al. 2 36th Annual Small Satellite Conference

implementation. Likewise, generic publish-subscribe
frameworks such as ZeroMQ4, ZCM5, MQTT6, and

ROS7 were considered and dismissed for similar reasons.

While these existing frameworks are excellent pieces of
software, the need for a minimalist, lightweight,
scalable, and easily reusable implementation warranted

the development of the new publish-subscribe

architecture of CRISP.

Figure 2: CRISP runs on the payload processor and
brokers the interface between the mission-specific

payload and the standard commercial host bus.

DESIGN

Overview

Figure 1 shows a top-level architecture of CRISP.
CRISP employs a publish-subscribe architecture to
divide functionality into multiple submodules whose

communication is coordinated by a central broker.
CRISP includes a collection of submodules to provide

functionality commonly used in payload flight software,
such as data storage and State of Health (SOH)
collection. In addition, mission-specific submodules can

be easily created using a standard interface with the
message bus. In general, the message bus and the
submodules are highly configurable and easily

modifiable in order to adapt to a wide variety of payload

requirements.

CRISP Message Bus

The CRISP Message Bus is the foundation of any
CRISP-based project and is responsible for data transfer
between submodules. It acts as a broker between

publisher submodules and subscriber submodules,
feeding published messages to their intended subscriber

based on the message type.

Figure 4 shows the architecture of the message bus.

CRISP submodules can register with the broker as a
publisher, subscriber, or both. Publishers write messages

to a single POSIX message queue, which the broker

processes continuously in a POSIX thread.

Figure 1: Top-level architecture of a CRISP-based

project.

Figure 2: Message Bus Design, arrows denote data

flow.

All messages published on the message bus start with a

header, as described in Table 1. In order to receive
messages, subscribers provide the broker with a map of
message types (as indicated in the message type field of

the header) and function pointers. The broker keeps track
of these mappings in a lookup table, and also maintains

a POSIX message queue for each subscriber. When the
broker reads a message from its publish queue, it writes
this message to the queue of each subscriber to this

message type.

When subscribers call the message bus read function
they have the option of blocking until a message arrives
or returning immediately. When a message is available,

SV Interface

Data Storage

Nonvolatile storage

Time Distribution

Ephemeris
Distribution

SOH Collection

Watchdogs

Command
Execution

Sensor Interfaces

Mission Data
Processing

CRISP Mission-specific

CRISP
Message

Bus

Message Broker

MSG ID to
Subscriber ID
Lookup Table

Publisher Thread
A write()

Publisher Thread
B write()

Subscriber
Thread A read()

Subscriber
Thread B read()

POSIX MQ

POSIX MQ

POSIX MQ

Scobie et al. 3 36th Annual Small Satellite Conference

the read function invokes the callback previously

registered for the message.

Table 1: Message Bus Header Format

Field
Name

Field
Type

Purpose

Message
Marker

uint16 Maury & Styles frame synchronization
code8, used to identify CRISP messages in

memory.

Message
Type

uint16 Used by broker to forward messages to the
correct subscriber and message handler

Sequence
Number

uint32 Used to ensure messages are processed in
the correct order

Space Vehicle Interface

The Space Vehicle (SV) Interface provides a standard
interface for the payload to communicate with the space
vehicle, regardless of the specific space vehicle used.
The SV-specific implementation of this interface is

modularized within the SV interface, so that new space
vehicles can be easily added without heavily modifying

the code base (Figure 3).

Figure 3: Space Vehicle Interface Design.

This standard interface allows the payload to receive

commands from the space vehicle and ground, as well as
send telemetry back. Additionally, this interface allows

for time and ephemeris information to be received from
the space vehicle. The space vehicle interface has two
modes: It can stream data to the SV for immediate

downlink, or it can send data to the SV for temporary

storage.

Storage Manager

The storage manager is responsible for storing data in
memory for later transmission to the ground.

Additionally, it is responsible for chunking messages to
fit the Maximum Transmission Unit (MTU) of the SV

interface and transmission to the SV interface. Figure 4

shows a diagram of the storage manager architecture .

Figure 4: Storage Manager Design. Green denotes

hardware, dark blue denotes another related

submodule, light blue denotes Storage Manager.

The storage manager keeps track of science data, state of
health, log messages, and the recent command history.
Each of these data types is given a dedicated ring buffer,

and data written to a buffer is stored sequentially and
without padding in order to save space. Pointers and
counters are used to keep track of buffer state, and these

are stored in nonvolatile memory in case of a reboot.
When the ground needs to retrieve data, a message is sent

to request a certain number of bytes. Starting from the
pointer to the last untransmitted byte in the buffer, the
data is divided into chunks sized at the MTU of the SV

interface. If the last chunk is smaller than this, a partial

chunk is sent.

Nonvolatile Memory Manager

The nonvolatile memory (NVM) manager is responsible
for all interactions with protected regions of nonvolatile
memory. This includes interacting with the Memory

Management Unit (MMU) to lock/unlock regions of
memory, write data, and handle new software uploads

SV

Hardware

HW driver

SV interface

Message Bus

RAM

D
a

ta

L
o

g
s

S
O

H

C
m

d
s

RAM

Interface

Chunker

Transmitter

Message Bus

Scobie et al. 4 36th Annual Small Satellite Conference

and parameter changes. Figure 5 gives an overview of

the NVM Manager architecture.

Figure 5: Nonvolatile Memory Manager Design.

To support a wide variety of payload processing

platforms, the NVM Manager abstracts interaction with
the MMU behind a standard interface, with the platform-

specific MMU-related functions registered to the NVM
Manager during initialization of the submodule. This
allows CRISP-based applications to be ported to new

hardware with minimal NRE.

Additionally, the NVM Manager is responsible for
handling software uploads and parameter changes from
the ground. This can be to either a specified memory

bank or parameter if these are defined in the
configuration, or to an arbitrary address. The ground
segment divides upload data into chunks based on the SV

Interface MTU and appends additional data and a CRISP
message bus header. The integrity of each chunk is

verified using a Cyclic Redundancy Check (CRC), as is
its continuity using the sequence field in the header.
Data is stored in a buffer until all integrity checks pass,

at which point the ground sends a final confirmation to

commit the data to nonvolatile memory. This upload
process is outlined in Figure 6. CRISP’s Ground Support

Equipment (GSE) includes the capability to upload

binary data to the payload using this scheme.

Figure 6: CRISP Upload Process.

Other Submodules

CRISP provides a number of utilities and support
submodules for convenience as well as code reuse

among submodules. These are summarized in Table 2

Table 2: Other Submodules

Name Description

Ephemeris
Manager

Periodically collects ephemeris data from the SV
interface and distributes it to submodules that

subscribe to ephemeris telemetry message types

Time
Manager

Periodically collects time data from the SV in
order to prevent clock drift.

State of
Health

Manager

Periodically collects SOH data from all
submodules and interfaces with storage manager

for storing in memory for later downlink

Print
Manager

Assists in the logging of messages for debugging
and error reporting, both in memory for later

downlink and on the command line. Allows for
filtering by severity level.

Watchdogs CRISP provides various watchdogs to reboot
submodules in case of an unrecoverable software
error.

Command
Line Utilities

CRISP provides various command line utilities to
aid in development.

Ground Support Equipment

CRISP provides a basic Ground Support Equipment
(GSE) utility to interface with CRISP-based payloads.
This GSE is able to inject a list of messages with optional

delays between injections into the CRISP Message Bus
via the SV Interface. Since commands and their structure

NVM

K
e
rn

e
l A

K
e
rn

e
l B

A
p

p
li
c
a

ti
o
n
 A

A
p

p
li
c
a

ti
o
n
 B

MMU

NVM Interface

Uploader

Message Bus

P
a

ra
m

s

Waiting for

upload

Upload

started

Upload end Upload

ongoing

Upload

Error

Any error

Start

First chunk

Middle

Chunk

Middle

Chunk

Last Chunk

Commit

to NVM

Restart

Recover

Scobie et al. 5 36th Annual Small Satellite Conference

will vary from mission to mission, the GSE ingests a
dictionary of commands and their structure at runtime.

Processing is automatically done to ensure compatibility
with the CRISP message bus. Telemetry output from the
payload via the SV interface is captured and written to a

binary file for later processing. In addition, the GSE is
capable of uploading data to the payload via the NVM

Manager’s upload capability. Figure 7 shows the

architecture of the GSE.

Figure 7: Ground Support Equipment Design.

Arrows indicate data flow.

Template Application

A template application has been developed to serve as a
starting point for new CRISP-based Flight Software.
This application includes all CRISP submodules, the
CRISP Message Bus, and an RTEMS-based shell as a

placeholder application.

ADOPTION AND INTEGRATION

CRISP has been adopted as the payload flight software

platform for several cutting-edge space radiation
research endeavors underway at LANL, including
MAMBO and ESRA. These payloads will be integrated

with the Nanoavionics M12P, a commercial 12U
CubeSat bus. Additionally, both use LEON-based

processor cards designed by LANL for payload
processing9, 10. RTEMS has been chosen as the payload
processor operating system due to its support on LEON

processors. Through the use of CRISP, both of these
projects have already seen a significant reduction in NRE

during the development of flight software.

MAMBO

The Mini Astrophysical MeV Background Observatory
(MAMBO) is an upcoming CubeSat mission in gamma-
ray astronomy. Its mission is to make high-quality

measurements of cosmic diffuse gamma-ray (CDG)
background in the 0.3–10 MeV energy range. Due to its
innovative shielded spectrometer design and relatively

low instrument background afforded by its small size,
MAMBO will provide the best measurements ever made

of the MeV CDG spectrum.11

ESRA

The Experiment for Space Radiation Analysis (ESRA) is
an upcoming CubeSat mission under development at

LANL. Its mission is to aid in the development of the
next generation of plasma and energetic charged-particle

sensors.12

Integration Requirements and Procedure

In order to integrate CRISP into a payload’s flight
software, the flight software must run on a POSIX-

compliant operating system. CRISP has been tested with
RTEMS and Linux, but in theory any POSIX -compliant

OS should be supported.

Some configuration of each of CRISP’s submodules may

need to occur based on the memory and speed constraints
of the payload processor as well as application-specific

requirements. Each submodule, including the message
bus, includes a variety of configuration parameters and
flags in order to tune CRISP and enable/disable features

as necessary.

Though CRISP supports a limited number of hardware
components, the software architectures of the
submodules that interface with hardware decouple the

specifics from the rest of the submodule. Thus, if an
application requires adding support for a new SV, MMU,
or nonvolatile memory, hardware support can be added

with minimal or no change to the submodule’s

application-level code.

Finally, mission-specific submodules must be added to
handle the interfaces with instruments or other hardware,

the execution of mission-specific commands, the
processing of mission data, and any other mission-

specific behavior. Due to CRISP’s publish-subscribe
architecture, a mission-specific submodule for an
instrument typically publishes science data and its state

of health, subscribes to relevant commands from the
ground and telemetry from other submodules, and

executes any periodic logic within its own thread.

GSE

Command
Dictionary

Telemetry

Command
Input

Command
Injector

Uploader Telemetry
Recorder

Payload

SV
Interface

Upload
Data

Payload
Interface

Scobie et al. 6 36th Annual Small Satellite Conference

ONGOING AND FUTURE WORK

CRISP currently supports one space vehicle
(NanoAvionics M12P), two payload processors (LEON3
and LEON4), and two operating systems (RTEMS and

LINUX). The need to deliver to missions that have
adopted CRISP prioritize the support of the Space
Vehicles, Payload Processors, and Operating Systems

used by these missions. However, as new missions adopt
CRISP, support for more of these will be added as

needed.

ACKNOWLEDGMENTS

Research presented in this PAPER was supported by the
Laboratory Directed Research and Development

program of Los Alamos National Laboratory under

project number 20210701DI.

REFERENCES

1. Dallmann, N., Delapp, J., Enemark, D.,
Fairbanks, T., Fortgang, C., Guenther, D., Judd,
Stephen., Kestell, G., Lake, J., Prichard, D.,

Proicou, M., Quinn, H., Reid, R., Schaller, E.,
Seitz, D., Stein, P., Storms, S., Sullivan, E.,
Tripp, J., Warniment, A., Wheat, R., “An Agile

Space Paradigm and the Prometheus CubeSat
System,” 29th Annual AIAA/USU Conference

on Small Satellites, Logan, Utah (August 2015)
2. NASA, “Core Flight System” (2020) [source

code] ”https://github.com/nasa/cFS

3. Xplore Inc., “KubOS” (2020) [source code]
https://github.com/kubos/kubos

4. The ZeroMQ Authors, “The ZeroMQ project”

(2022) [source code]
https://github.com/zeromq

5. The ZeroCM Authors, “ZCM: Zero
Communications and Marshalling” (2021)
[source code] https://github.com/ZeroCM/zcm

6. OASIS, “MQTT Version 5.0,” (March 2019)
[website] https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

7. Open Robotics, “Robot Operating System,”
(2021) [source code] https://github.com/ros/ros

8. Maury, J., Styles, F., "Development of
Optimum Frame Synchronization Codes for
Goddard Space Flight Center PCM Telemetry

Standards," 1964 National Telemetering
Conference, Los Angeles, California (June
1964)

9. Merl, R., Cox, E., Dutch, R., Graham, P.,
Larsen, S., Michel, J., Milby, D., Morgan, K.,

and Tripp, K., “LEON4 Based Radiation-
Hardened SpaceVPX System Controller,” 2020

IEEE Aerospace Conference, Big Sky,
Montana (March 2020)

10. Wiens, R. et. al., “The SuperCam Instrument
Suite on the NASA Mars 2020 Rover: Body
Unit and Combined System Tests,” figure 24,

Space Sci Rev 217, 4 (2021)
11. Bloser, P., Vestrand, T., Hehlen, M., Parker, L.,

Beckman, D., McGlown, J., Holguin, L.,
Katko, K., Sedillo, J., Nelson, A., Lee, G., “The
Mini Astrophysical MeV Background

Observatory (MAMBO) CubeSat Mission,”
35th Annual Small Satellite Conference, Logan,
Utah (August 2021)

12. Maldonado, C. A. et al., “The Experiment for
Space Radiation Analysis: A 12U CubeSat to

Explore the Earth's Radiation Belts,” IEEE
Aerospace Conference, Big Sky, Montana

(2022)

