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ABSTRACT 

The Agile Space portfolio of projects at Los Alamos National Laboratory (LANL) develops low-cost, rapidly-
deployable space payloads and systems. To increase the agility of future missions, we are developing CRISP: the 

CubeSat Reusable Interface Software Platform. CRISP provides a lightweight and reusable flight software framework 
for rapid integration of custom payloads with commercial microsatellite platforms. CRISP cuts development time and 
costs by reducing non-recurring engineering (NRE); thereby accelerating mission agility. To achieve these goals, 

CRISP provides a core set of payload/data management functions and abstracts the interface between the bus avionics 
and the payload(s). CRISP currently consists of the following core software modules: a  lightweight and scalable 
publish-subscribe message bus, a  space vehicle interface, volatile and nonvolatile memory management, time and 

ephemeris distribution, debug printing and logging, and watchdogs. We have also developed a modular ground support 
utility to ease integration and testing, as well as a template flight software application that can be quickly adapted to 

new missions. Two upcoming CubeSat missions at LANL have already adopted CRISP: the Experiment for Space 

Radiation Analysis (ESRA) and the Mini Astrophysical MeV Background Observatory (MAMBO). 

BACKGROUND 

Traditional space missions are typically characterized by 

a low risk tolerance and the associated high cost and long 
schedules. The Agile Space portfolio of projects at Los 

Alamos National Laboratory (LANL) aims to create a 
capability that enables higher-risk missions to be 
executed at lower cost and on shorter timelines. This 

opens the door to a range of new missions for science, 
technology demonstration, and constellations. 
Additionally, increased agility allows for faster response 

to emerging national and global security threats.1 

A core element of LANL’s approach to Agile Space is a  
mission-agnostic technical and logistical framework that 
leverages commercial technology and establishes 

standardized hardware, software, and workflows (Figure 
1). This reduces Non-Recurring Engineering (NRE), a 

major cost and schedule driver, and builds flight 
heritage. As a result, the primary mission risk is properly 

focused on the typically novel state-of-the-art payload. 

One key component of this approach is CRISP: the 

Cubsat Reusable Interface Software Platform. CRISP 
enables the payload processor to become a standardized, 
reusable, and highly-functional broker between the 

mission-specific payload and the commercial host bus 

avionics (Figure 2). 

 

 

Figure 1: Envisioned LANL Agile Space capability 

that revolutionizes the time and resources needed to 
produce actionable information for a given mission 
need. Mission-specific aspects (red), commercial 

technology (blue), and standardized workflows 

(green) are shown. 

We evaluated a variety of existing small-satellite 
software platforms that could potentially offer the 

desired functionality. NASA’s Core Flight System 
(cFS)2 framework and Xplore’s KubOS3 both employ a 
publish-subscribe architecture; however, they both 

impose a significant level of overhead that was not 
compatible with our need for a low-resource lightweight 
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implementation. Likewise, generic publish-subscribe 
frameworks such as ZeroMQ4, ZCM5, MQTT6, and 

ROS7 were considered and dismissed for similar reasons. 

While these existing frameworks are excellent pieces of 
software, the need for a minimalist, lightweight, 
scalable, and easily reusable implementation warranted 

the development of the new publish-subscribe 

architecture of CRISP.  

Figure 2: CRISP runs on the payload processor and 
brokers the interface between the mission-specific 

payload and the standard commercial host bus. 

 

DESIGN 

Overview 

Figure 1 shows a top-level architecture of CRISP.  
CRISP employs a publish-subscribe architecture to 
divide functionality into multiple submodules whose 

communication is coordinated by a central broker. 
CRISP includes a collection of submodules to provide 

functionality commonly used in payload flight software, 
such as data storage and State of Health (SOH) 
collection. In addition, mission-specific submodules can 

be easily created using a standard interface with the 
message bus. In general, the message bus and the 
submodules are highly configurable and easily 

modifiable in order to adapt to a wide variety of payload 

requirements. 

CRISP Message Bus 

The CRISP Message Bus is the foundation of any 
CRISP-based project and is responsible for data transfer 
between submodules. It acts as a broker between 

publisher submodules and subscriber submodules, 
feeding published messages to their intended subscriber 

based on the message type. 

Figure 4 shows the architecture of the message bus. 

CRISP submodules can register with the broker as a 
publisher, subscriber, or both. Publishers write messages 

to a single POSIX message queue, which the broker 

processes continuously in a POSIX thread. 

 

Figure 1: Top-level architecture of a CRISP-based 

project. 

 

 

Figure 2: Message Bus Design, arrows denote data 

flow. 

All messages published on the message bus start with a 

header, as described in Table 1. In order to receive 
messages, subscribers provide the broker with a map of 
message types (as indicated in the message type field of 

the header) and function pointers. The broker keeps track 
of these mappings in a lookup table, and also maintains 

a POSIX message queue for each subscriber. When the 
broker reads a message from its publish queue, it writes 
this message to the queue of each subscriber to this 

message type. 

When subscribers call the message bus read function 
they have the option of blocking until a  message arrives 
or returning immediately. When a message is available, 
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the read function invokes the callback previously 

registered for the message. 

Table 1: Message Bus Header Format 

Field 
Name 

Field 
Type 

Purpose 

Message 
Marker 

uint16 Maury & Styles frame synchronization 
code8, used to identify CRISP messages in 

memory. 

Message 
Type 

uint16 Used by broker to forward messages to the 
correct subscriber and message handler 

Sequence 
Number 

uint32 Used to ensure messages are processed in 
the correct order 

 

Space Vehicle Interface 

The Space Vehicle (SV) Interface provides a standard 
interface for the payload to communicate with the space 
vehicle, regardless of the specific space vehicle used. 
The SV-specific implementation of this interface is 

modularized within the SV interface, so that new space 
vehicles can be easily added without heavily modifying 

the code base (Figure 3).  

 

Figure 3: Space Vehicle Interface Design. 

This standard interface allows the payload to receive 

commands from the space vehicle and ground, as well as 
send telemetry back. Additionally, this interface allows 

for time and ephemeris information to be received from 
the space vehicle. The space vehicle interface has two 
modes: It can stream data to the SV for immediate 

downlink, or it can send data to the SV for temporary 

storage. 

Storage Manager 

The storage manager is responsible for storing data in 
memory for later transmission to the ground. 

Additionally, it is responsible for chunking messages to 
fit the Maximum Transmission Unit (MTU) of the SV 

interface and transmission to the SV interface. Figure 4 

shows a diagram of the storage manager architecture . 

 

Figure 4: Storage Manager Design. Green denotes 

hardware, dark blue denotes another related 

submodule, light blue denotes Storage Manager. 

The storage manager keeps track of science data, state of 
health, log messages, and the recent command history. 
Each of these data types is given a  dedicated ring buffer, 

and data written to a buffer is stored sequentially and 
without padding in order to save space. Pointers and 
counters are used to keep track of buffer state, and these 

are stored in nonvolatile memory in case of a reboot. 
When the ground needs to retrieve data, a message is sent 

to request a certain number of bytes. Starting from the 
pointer to the last untransmitted byte in the buffer, the 
data is divided into chunks sized at the MTU of the SV 

interface. If the last chunk is smaller than this, a  partial 

chunk is sent. 

Nonvolatile Memory Manager 

The nonvolatile memory (NVM) manager is responsible 
for all interactions with protected regions of nonvolatile 
memory. This includes interacting with the Memory 

Management Unit (MMU) to lock/unlock regions of 
memory, write data, and handle new software uploads 
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and parameter changes. Figure 5 gives an overview of 

the NVM Manager architecture. 

 

Figure 5: Nonvolatile Memory Manager Design. 

To support a wide variety of payload processing 

platforms, the NVM Manager abstracts interaction with 
the MMU behind a standard interface, with the platform-

specific MMU-related functions registered to the NVM 
Manager during initialization of the submodule. This 
allows CRISP-based applications to be ported to new 

hardware with minimal NRE. 

Additionally, the NVM Manager is responsible for 
handling software uploads and parameter changes from 
the ground. This can be to either a specified memory 

bank or parameter if these are defined in the 
configuration, or to an arbitrary address. The ground 
segment divides upload data into chunks based on the SV 

Interface MTU and appends additional data and a CRISP 
message bus header. The integrity of each chunk is 

verified using a Cyclic Redundancy Check (CRC), as is 
its continuity using the sequence field in the header.  
Data is stored in a buffer until all integrity checks pass, 

at which point the ground sends a final confirmation to 

commit the data to nonvolatile memory. This upload 
process is outlined in Figure 6. CRISP’s Ground Support 

Equipment (GSE) includes the capability to upload 

binary data to the payload using this scheme.  

 

Figure 6: CRISP Upload Process. 

Other Submodules 

CRISP provides a number of utilities and support 
submodules for convenience as well as code reuse 

among submodules. These are summarized in Table 2 

Table 2: Other Submodules 

Name Description 

Ephemeris 
Manager 

Periodically collects ephemeris data from the SV 
interface and distributes it to submodules that 

subscribe to ephemeris telemetry message types 

Time 
Manager 

Periodically collects time data from the SV in 
order to prevent clock drift. 

State of 
Health 

Manager 

Periodically collects SOH data from all 
submodules and interfaces with storage manager 

for storing in memory for later downlink 

Print 
Manager 

Assists in the logging of messages for debugging 
and error reporting, both in memory for later 

downlink and on the command line. Allows for 
filtering by severity level. 

Watchdogs CRISP provides various watchdogs to reboot 
submodules in case of an unrecoverable software 
error. 

Command 
Line Utilities 

CRISP provides various command line utilities to 
aid in development. 

Ground Support Equipment 

CRISP provides a basic Ground Support Equipment 
(GSE) utility to interface with CRISP-based payloads. 
This GSE is able to inject a list of messages with optional 

delays between injections into the CRISP Message Bus 
via the SV Interface. Since commands and their structure 
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will vary from mission to mission, the GSE ingests a 
dictionary of commands and their structure at runtime. 

Processing is automatically done to ensure compatibility 
with the CRISP message bus. Telemetry output from the 
payload via the SV interface is captured and written to a 

binary file for later processing. In addition, the GSE is 
capable of uploading data to the payload via the NVM 

Manager’s upload capability. Figure 7 shows the 

architecture of the GSE.  

 

Figure 7: Ground Support Equipment Design. 

Arrows indicate data flow. 

 

Template Application 

A template application has been developed to serve as a 
starting point for new CRISP-based Flight Software. 
This application includes all CRISP submodules, the 
CRISP Message Bus, and an RTEMS-based shell as a 

placeholder application. 

ADOPTION AND INTEGRATION 

CRISP has been adopted as the payload flight software 

platform for several cutting-edge space radiation 
research endeavors underway at LANL, including 
MAMBO and ESRA. These payloads will be integrated 

with the Nanoavionics M12P, a commercial 12U 
CubeSat bus. Additionally, both use LEON-based 

processor cards designed by LANL for payload 
processing9, 10. RTEMS has been chosen as the payload 
processor operating system due to its support on LEON 

processors. Through the use of CRISP, both of these 
projects have already seen a significant reduction in NRE 

during the development of flight software. 

MAMBO 

The Mini Astrophysical MeV Background Observatory 
(MAMBO) is an upcoming CubeSat mission in gamma-
ray astronomy. Its mission is to make high-quality 

measurements of cosmic diffuse gamma-ray (CDG) 
background in the 0.3–10 MeV energy range. Due to its 
innovative shielded spectrometer design and relatively 

low instrument background afforded by its small size, 
MAMBO will provide the best measurements ever made 

of the MeV CDG spectrum.11 

ESRA 

The Experiment for Space Radiation Analysis (ESRA) is 
an upcoming CubeSat mission under development at 

LANL. Its mission is to aid in the development of the 
next generation of plasma and energetic charged-particle 

sensors.12 

Integration Requirements and Procedure 

In order to integrate CRISP into a payload’s flight 
software, the flight software must run on a POSIX-

compliant operating system. CRISP has been tested with 
RTEMS and Linux, but in theory any POSIX -compliant 

OS should be supported. 

Some configuration of each of CRISP’s submodules may 

need to occur based on the memory and speed constraints 
of the payload processor as well as application-specific 

requirements. Each submodule, including the message 
bus, includes a variety of configuration parameters and 
flags in order to tune CRISP and enable/disable features 

as necessary. 

Though CRISP supports a limited number of hardware 
components, the software architectures of the 
submodules that interface with hardware decouple the 

specifics from the rest of the submodule. Thus, if an 
application requires adding support for a new SV, MMU, 
or nonvolatile memory, hardware support can be added 

with minimal or no change to the submodule’s 

application-level code.  

Finally, mission-specific submodules must be added to 
handle the interfaces with instruments or other hardware, 

the execution of mission-specific commands, the 
processing of mission data, and any other mission-

specific behavior. Due to CRISP’s publish-subscribe 
architecture, a  mission-specific submodule for an 
instrument typically publishes science data and its state 

of health, subscribes to relevant commands from the 
ground and telemetry from other submodules, and 

executes any periodic logic within its own thread. 
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ONGOING AND FUTURE WORK 

CRISP currently supports one space vehicle 
(NanoAvionics M12P), two payload processors (LEON3 
and LEON4), and two operating systems (RTEMS and 

LINUX). The need to deliver to missions that have 
adopted CRISP prioritize the support of the Space 
Vehicles, Payload Processors, and Operating Systems 

used by these missions. However, as new missions adopt 
CRISP, support for more of these will be added as 

needed.  
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